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ABSTRACT .: This paper illustrates the generality of the hybrid 
analysis method for solving nonlinear circuit elements in 
arbitrary circuit topologies and demonstrates the theoretical ties 
with conventional varying topology methods for semiconductor 
switch representation. A new method for generating hybrid 
equations without preliminary knowledge of the topological tree 
is also presented. The goal is to provide more general and 
efficient solution methods for modelling non linear circuits in the 
EMTP (Electromagnetic Transients Program). 

1. INTRODUCTION 
The most common approach (1) for time-domain digital 

simulation of multiphase power networks is based on nodal or 
modified-nodal [2) analysis with fixed time-step trapezoidal 
integration. Discretized linear network equations are given by 

Yn Vn =In ( Yn is the nodal admittance matrix, Vn is the node 
to ground voltage vector and In is for nodal current injections) 
and solved directly through forward-backward substitution at 
each simulation time-point. The above set of equations is 
referred to as the main system of linear equations. The choice 
of nodal analysis is due to the simplicity of the equation 
formulation algorithm, which avoids the lengthy calculations of 
the topological tree. The trapezoidal integration is chosen for 
being a precise A-stable method which is simple to program and 
which requires a minimal number of history terms. The fixed 
time-step is mainly imposed by the presence of transmission 
lines, where a change of time-step would require interpolation 
for a large number of history terms within the propagation time 
delay interval. The fixed time-step also avoids costly 
recalculations and retriangularizations of Yn in large networks, 
but in counterpart it has no capability for automatic error control 
and time-step selection according to simulated network time 
constants. 
Large power networks are mostly linear, interconnecting a 

limited number of non linear branches. Two main methods [3) are 
presently available for the representation of nonlinear branch 
functions. In the first method a non linear voltage-current branch 
function is linearized with a Norton equivalent inserted in the 
main system of linear equations at each simulation time-point. 
It can be demonstrated that when the Norton equivalent update 
is non-iterative, this method is an approximate version of the 
solution through the Newton-Raphson algorithm [4]. The 
second method referenced as the post-compensation (also 
referenced as compensation method) algorithm, offers a 
simultaneous solution while applying an iterative process within 
only a reduced set of linear network equations. This set of 
equations represents the Thevenin equivalent of the linear 
network. Since transmission lines introduce decoupling in the 
Thevenin equivalent, several non linear branch equations can be 
eventually solved concurrently. This second method currently 
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used in the EMTP [3)(5], is particularly advantageous for solving 
nonlinearities in large linear networks, since it is simultaneous 
and avoids lengthy interactions with the main system of linear 
equations. 
The compensation method although very powerful, is not 

conformable to the topological proper-tree~ (6) and therefore 
has topological limitations. The hybrid analysis has been found 
[7) to be more general than the compensation algorithm, and can 
be used to model varying topologies caused by semiconductor 
switches in nonlinear power electronics circuits. This paper 
makes new contributions in addition to the approach in [7], by 
demonstrating how hybrid analysis equations can be generated 
and solved without preliminary knowledge of ~ and how to 
account for varying topological trees in a more simple algorithm 
than the conventional varying topology methods (8)-(11). A new 
more general automatic method for extracting port equations is 
also presented and permits inclusion of nonlinear elements 
isolated by linear branches. Detailed solution steps are 
elaborated for topologically difficult sample circuits. This paper 
also contributes the extension of nonlinear branch or element 
representation to the concept of the multiport nonlinear circuit, 
which is a circuit that concentrates a large number of 
nonlinearities and can be advantageously solved through a 
minimal simultaneous connection interface with the main 
system of linear equations. All contributions are within the scope 
of an arbitrary network solution. 
The presented research is justified by the steady increase of 

EMTP simulation needs for nonlinear elements (arc models, 
arresters, machines ... ) in arbitrary topologies and nonlinear 
circuits such as power converters and flexible ac transmission 
systems. 

2. CONFORMABILITY TO THE TOPOLOGICAL 
PROPER-TREE 

The equations characterizing an Jf-port [12] through the 
hybrid matrix Hare given by (hybrid equations): 

Iv Hw vl Vv Hva vb Va 

[A l [ H l [A ] [ H ] [A l V1 = Hlv Hll jl + Hla Hlb jb (
1

) 

A A 

where vector V is for extracted port voltages and vector I stands 
for extracted port currents. The subscripts a , b , v and I are 
used to denote independent voltage source voltage ports, 
independent current source current ports, voltage ports and 
current ports respectively. The extracted voltage and current 
ports can be of any nature linear or non linear, but only nonlinear 
ports are of interest in this paper. The elements forming the 

Jf-port are all linear and vector lb includes history terms for 
discrete circuit models. The nonlinear port identity (voltage or 
current) is not available prior to formulation of (1 ). The non linear 
port voltages and currents are related through the nonlinear 
function <I> : 



A A 

<I>( lcp • v cp ) = 0 (2) 

where icp = [iv i1 ]
1 and Ve!> = [ Vv V1 ]

1 when ports are 

identified. The selection of port identity is not arbitrary. This 
statement can be illustrated by formulating hybrid equations for 
the circuit of Figure 1. If all non linear branches are modelled as 
current ports, then using equation (1) : 

v, = Hui, + [ H1a H1b 1 [V, ib]t (3) 
in which case H11 = 0 . This set of equations cannot be solved 
without adding artificial circuit elements, and is identical to : 

A A 

v, = zth 11 + vlh (4) 
with Zih = H11 (:lih = O for the test case of Figure 1) and 

vlh = [ H1a H,b ] [Va ib ]1 the Thevenin impedance and 
voltage respectively. This standard equation is used in the 
compensation method which can only model a non linear branch 
as a nonlinear current source. 
The singular equation (3) is avoided when at least one 

nonlinear branch is modelled as a voltage port, to be 
conformable to ~ : the topological proper-tree of the circuit of 
Figure 1 must include at least one nonlinear voltage port in the 
tree branches. The compensation method, contrary to hybrid 

analysis, has no capability to comply with the restrictions of ~ 
and is thus less general. The topological tree for the circuit of 
Figure 1 allows a minimum of 1 and a maximum of 3 voltage 
ports, the hybrid equations for 3 voltage ports are shown in 
Appendix A. 

Figure 1 Test circuit 

3. AUTOMATIC EXTRACTION OF HYBRID EQUATIONS 
To demonstrate how equation (1) can be extracted from the 

nodal analysis equations in the EMTP, it is useful to recall the 
currently used EMTP method for calculating Z1h • The basic 

system Yn Vn = In is first expanded into: 

[~:: ~: ][ ~:: l = [ ::: l (S) 

and then modified to calculate Vn, by forward backward 

substitution in : 

U11 Vn, = L.j"1
1 In, - L.j11 Y12 Vn, (6) 

where subscripts 1 and 2 stand for n unknown node voltages 
and s nodes connected to known voltage sources respectively. 
Matrices U11 and L11 are from the upper-lower decomposition 
(calculated through Gaussian elimination) of Y11 . The following 
equations are also recalled: 

(7) 
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V t ' t cp = ~cp, Vn, + Anq,
2 

Vn2 (8) 

U11 Vn4>, = - L.j11 Anq,
1 

icl> (9) 

where Vncp, represents the node voltage contributions from the 

nonlinear branch currents, V~1 is the vector of network node 

voltages after compensation and the node incidence matrix of m 

nonlinear branches is defined as Ancp = [ A~4>, A~2 ]
1 

(a 11 E Ancp and a11 = 1 if current of branch j is leaving node i, 

a11 = -1 if current of branch j is entering node i and aq = O 

otherwise). To calculate Zih it is sufficient to solve equation (9) 
for V ncp, and then to combine the resulting equation with 

equations (7) and (8), as follows : 
A 

V ncp, = Zcp le!> (1 O) 

~ = A~1 Zcp (11) 

Zcp is an n x m matrix. The formulation of (9) uses minimal 

computer memory but its solution requires m forward backward 
substitutions. 
Since equation (9) makes the assumption that all nonlinear 

branches are modelled as nonlinear current sources, it cannot 
be used for generating hybrid equations. The following steps are 
applied instead. At start point, all ports besides source ports are 
of undetermined nature. Equation (8) is combined with 
equations (6), (7) and (9) to result in : 

[~, :;:, :~· l[~: l [~; l <'~ 
with Vn2 =Va and In, = - Anb, ib (see equation (1)). The 

matrix Anb = [ A~b A~b ]1 is the node incidence matrix of 
, 2 

current source ports. 
Equation (12) can be solved by applying Gaussian elimination 

to the upper part independently from the lower part. Although 
this treatment is acceptable in most of the solved cases, it is 
preferable to exploit the structure of (12) for solving cases where 
a zero pivot appears in the elimination of Y11 . This is the case, 
for example, in Figure 1 where a linear branch (branch 
connected between the nodes of v3 and v4 ) is isolated from the 
linear network by nonlinear branches. To avoid the zero 
determinant matrix thus formed, it is sufficient to exchange rows 
with the lower part of (12) during the triangularization of Y11 . 

When an exchange pivot is not available in A~cp, , it is feasible to 

create an artificial port with infinite resistance and connected to 
the trouble node, this is one more advantage of equation's (12) 
structure. 

The Y11 reduction is followed by the elimination of A~4> 1 for 

decoupling of port equations from n network voltages. It follows 
that modifications applied to equation (12) will result in : 

[ 
ux Y~2 A~cp, l[ ~:1 l = [ - A~b, 
o r11 rr A r1b 

lcp 

(13) 

where superscript x indicates matric~s affected by the Gaussian 
elimination and matrix B resulted from row exchanges. 

Considering the unitary elements of A~4>, it is preferable to start 

by reducing it to the echelon form before elimination using upper 
part pivots. 



Equation (13) contains two independent equations, the linear 
network equations : 

ux v~, = - A~, ib - A~, i«P - Y~2 Va + B Ve? (14) 

and the nonlinear port equations : 

IIi«P=qrv«P+r[V11ib1 1 (15) 

with r = [ -r111 r 1bJ. 
The complete extraction procedure of hybrid equations from 

equation (13), is shown in Appendix A for the circuit of Figure 1. 
It is based on the preliminary knowledge of port identity within 

the restrictions of 'ff. In a general case, 'ff can be found by 
calculating the fundamental cutset matrix, but this is a lengthy 
and practically prohibitive process, specially for large networks. 
A new method for finding port identity is needed. 
It must be understood that equation (15) cannot be symbolically 

simplified since the conditioning of matrices II and qr is unknown 
and assuming all voltage ports or all current ports may not be in 

conformity with 'ff. The proposed solution algorithm is based on 
the diagonalization of matrix II or qr : the choice is imposed by 
the needed number of voltage ports and implementation 
efficiency. The following demonstrations are for the limiting 
cases of minimal and maximal number of voltage ports. 
When the requested number of voltage ports is minimal, the 

solution of (15) starts by the diagonalization of qr, By letting the 
ports classified in the first columns of qr to be more susceptible 
to become voltage ports, the reduction of qr is applied from right 
to left. Artificial ports with zero current, for example, are placed 
in the last columns of 'P since it is preferable to keep them as 
current ports. At the end of the reduction process, equation (15) 
has the following shape : 

II' icp = qr• vcp + f' [Va ib ]1 (16) 
where: 

qr~ = 0 i = 1, .. .,m1 , VJ 
If 

'P( = o I ?! m1 + J , VJ 
If 

qr(
11 

= 1 I= m1 + J, J = 1, ... ,m2 

II' = [II~ II(] 

(17) 

(18) 

Matrices qr~ and qr( are m x m1 and m x m2 respectively. The 

m1 ports with null pivots in 'P~ are voltage ports. Since the 
diagonalization of 'P is performed from right to left, it is clear that 
ports classified in the first columns of 'P have a greater 

probability to remain in 'P~ during the reduction process and 

become voltage ports. The limiting case is 'P' = 'P( and 

'P~ = 0, which means that it is acceptable to have no voltage 

ports in 'ff . 

To finalize the solution of (16) it is necessary to exchange II~ 

with 'P~ and to pursue with the reduction to identity of [ - II~ w;] 
until [Iv V1 ]t is isolated : 

[-'P~ niJ[~:] = [-n~ 'Pi]~] + r[t] (19) 

~] = ["~ n;·1[t] + r·[~:] (20) 

Equation (20) is equivalent to (1 ). 

When the requested number of voltage ports is maximal, it is 
more efficient to start the solution of (15) by the diagonalization 
of II. By letting the ports classified in the first columns of II to be 
more susceptible to become voltage ports, the reduction of II is 
applied from left to right, to transform equation (15) into : 

II0 icp = w0 vcp + r 0 lV11 ib11 c21) 
where: 

II0 = [II~ III] 

II~11 1 I = J 

II~11 o I ?! I 

II0 = 0 lu 

(22) 

w0 
= [w~ WI] c2s) 

Matrices Il~ and III are m x m1 and m x m2 respectively. The 

m 1 ports of II~ are voltage ports. The symbol mA designates 
artificial current ports. The solution of (21) is finalized by 

exchanging III with 'PI and isolating [Iv V1 J' as in equation 
(20). 

The proposed method has the ability to account for 'ff without 
explicitly calculating it. A given circuit can have more than one 

'ff. It follows that port identity is not unique, but can be forced 
through the port numbering to avoid ill-conditioned hybrid 
equations. 
The calculation of hybrid equations for a minimal number .of 

voltage ports and no preliminary knowledge of 'ff, is 
demonstrated for a test circuit in Appendix B. 

4. VARYING TOPOLOGY REPRESENTATION 
A time varying topology results when semiconductor devices 

such as power converter valves, are modelled as ideal switches. 
A A A 

Aswitchisextractedasanonlinearportj:V.;
1 

= O (V.;
1 

E Vq,) 
A A A 

when the switch is closed and 1.,
1 

= 0 ( 1.,
1 

E lq,) when the 

switch is open. If open and closed ports are regrouped then 
equation (1) can be written as : 

A9 

Iv ff99 
VY 

Hee 
vl H:11 H~b 

AO 

[~] + [t:] Iv Hoe Hoe H~11 H~b VY vl (24) A9 

V1 ff99 Hee H~ Hl:, Iv II -o 
V1 ff09 

Iv Hoe 
II H~ H~ 

A9 A0 

where the superscript e stands for ports with [ Vv 11 J' ?! O and 
-o -o -e 

o stands for ports with [ Vv 11 J' = 0. Considering that both Iv 
.a -e -e 

and V1 are related to Vv and 11 respectively through a piecewise 
linear version of <I> in equation (2), equation (24) is split in two : 

Vv v11 vb Va Jv [.el [He He][•] [e] 
M' i~ = H~ Hl:, Ib - Ej (25) 

Iv Vv VII vb V11 
[

•

0

] [•

9

] [Ho Ho] [• ] V~ + M" j~ = H~ H!i, Ib (26) 

J: and Ej are time dependent linear segment current and 

voltage intercepts respectively. Equation (25) is solved first for 
-e-e -o-o 

[ Vv 11 J' which is substituted into (26) to calculate [ Iv V1 J'. 
The size and conditioning of M' depend on the solved circuit 
topology. The size of M' is minimal when all closed ports are 
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voltage ports and all open ports are current ports. If in addition 
all nonlinear ports are switches then M' and M" are both zero 
and the solution of {26) is obtained directly. 

It is possible to reformulate the switch configuration in c:r at each 
change of switch state, in order to transfer the largest possible 

number of closed switch ports in the branches of c:r. This is 
achieved by stopping the matrix qr (equation (16) ) reduction 
process before its first closed port columns. The 'i1 matrix 
elements are unitary which makes it easier to reduce. The 
reformulation strategy must be programmed efficiently to avoid 
lengthy recalculations at each change of circuit topology. The 
reformulation can be avoided if the initial topology hybrid 
equations have acceptable conditioning for all circuit operating 
modes, but then the size of M' is not always minimized. 
Reformulation examples for the test circuit of Figure B.1 are 

presented in Appendix C. 

5. THE THEORETICAL TIES WITH CONVENTIONAL 
VARYING TOPOLOGY METHODS 

The purpose of this section is to provide a practical 
demonstration to the fact that conventional varying topology 
methods [8]-[11] are enlisted in the more simple concept of 
hybrid analysis. The shown varying topology equations are for 
the general case where ordinary linear branches can also be 

part of the links of c:r in addition to valves (modelled as ideal 
switches), contrary to more limited presentations such as in 
[9]-[11]. - -If vector lb stands for branch currents of c:r and le for link 

- - -currents of c:f, then lb= - Ocie where D = [1 De] is the 

fundamental cutset matrix [6]. The matrix D is also used to relate 
- -t -

tree link and branch voltages: v, = De Vb. When branches are 
regrouped according to their type : 

(27} 

[~::] ~ [~t ~t] [~~] (28) 

where the subscripts o and ,, are used to distinguish linear and 
nonlinear (switches) branches. The tree branches are 
characterized by : 

(29} 
-This equation is general and in the most simple cases Zb is a 

diagonal matrix (no coupling between branches) composed of - - -Zb
00 

and Zbw· In this presentation the coefficients of Zb are 

discretized equivalents and vector Eb includes history terms in 

addition to independent voltage sources. When equations (27) 
and (28) are combined with (29), the following set of equations 
follows: · 

-
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This equation can be solved knowing that Zbw = 0 (the 

- - -
switches in the tree branches are closed). le = 0 (le E le ) 

"t "t u 

ifswitchjisopen and Ve = 0 ifswitchjisclosed. Th~ linear tree 
"1 

links are described by : 

- - -
FeooVeo + Zeoolto + Eeo = 0 (31) 

where Ee
0 

is the vector of history terms and independent current 

sources and F,
00 

= - (1 o]t when current sources are set to 

occupy the last cells in the link list. 
Equation (30) must be reformulated when a switch in the 

branches of c:r goes into its off state ( Zb = oo ). The 
Wp 

reformulation algorithm is based on diakoptics [8]. When one or 
-

more conducting valves change their state, the currents of 1,u 

are no more independent; le is now related to its reduced 

version i; through the transformation matrix CT: 

[ ~to] = CT [!:o] 
1tu 1tu 

{32} 

Equation (32) is replaced into (30), both sides of which are 
-t 

multiplied by CT .The basic reformulation principle is simple but - -the automatic synthesis of CT from De is complicated [8). 
specially with more than one switch in the tree branches. 
A judicious combination of equations (27)-(29) and (31) can - - - - . 

isolate vectors lbu , 1,
11 

, Vbu and v,
11 

, but to avoid explicit 

matrix inversions it is preferable to apply tableau analysis by 
juxtaposing equations (27)-(29) and (31) : 

1 0 Dcoo 0 0 Dcou 0 0 lbo 0 
-t 

0 1 0 - Deco 
-t Veo 0 0 - Dcou 0 0 

0 0 Deuo 0 1 De,,,, 0 0 Ito 0 
-t 

0 0 0 - Deuo 
-t vbo 0 0 -Dew 1 0 -

zboo 0 0 - 1 0 0 0 0 lb\) - Ebo - -0 Feoo z,oo 0 le" 
-

0 0 0 0 - Eeo 

vbu 
(33) -

v," 
When Gaussian elimination is applied to eliminate the framed 
part of the left side matrix, the following set of equations 
becomes decoupled : 

- [ibul - [vb"] - [Ebo] II- +qr- f-
ie Ve Ee \) \) 0 

{34) 

This is identical to equation (15) when ports are identified , - - - - ,.. 
observing that : II = II I qr = - qr • r = r . Eb = v II ' 

0 - ,.. - ,.. 
Ee

0 
=lb, lbu ='=Iv. 1,

11 
='= 11, Vbu ='= Vv andV,

11 
='= V1• It follows 

that the traditional equations used to describe a varying topology 
are closely linked to the much more simple concept of hybrid 
analysis. In fact the passage from (33) to (34) constitutes 
another (much less efficient) method [12) for automatic 
extraction of (15). The advantage of hybrid equations is that the 
unknowns are only nonlinear port variables, they can be easily 



extracted from and implemented into simple nodal analysis 
equations and their reformulation process at topological 

changes does not require the knowledge of D and lengthy 

manipulations with the transformation matrix Cr . 
In equation (30) all switches in the tree branches must be in 

their on state to avoid ill-conditioning. Which means that for 
some circuits (such as Figure 1 when all nonlinear branches are 

not conducting) or operating modes, conformability to 'ff cannot 
be achieved. This is not the case with the varying topology 
representation through hybrid equations, where a switch in its 

open state can be included in the branches of 'ff. 

6. THE NON LINEAR CIRCUIT CONCEPT 

The formulation of (12) is more efficient and general than (9). 
It extracts nonlinear port equations that can use voltage or 
current ports in arbitrary topologies and uses a single step for 

finding V~, (equation (14)). In contrast, the formulation of (9) can 
only represent current ports, nonlinear branches connected to 

voltage sources are unacceptable and v~, is found from (7) 

which combines the two additional calculation steps for V n from 
1 

(6) and Vnt1>
1 

from (10). 

The structure of (12) becomes identical to modified nodal 
analysis when the s voltage source nodes are transferred into 
the list of n unknown node voltages : 

[ Y~ Ans Antj>l[~n1 ] [~n1 ] 
Ans 0 0 111 Va {35) 
A~ ... o 0 i y 

'I' tj> tj> 

where Ans is the node incidence matrix of voltage sources. The 
left hand side matrix· of this equation is now completely 
symmetric and the nonlinear port equations are extracted the 
same way (as from (12)). The Gaussian elimination of (35) with 
row interchanges, can be efficiently implemented [2]. 
The formulation efficiency of (12) and the following method for 

generating port equations, should not be compared with 
equations (9) to (11), since, as explained in Section 2, these 
equations are restrictive and do not apply to arbitrary 
interconnections of nonlinear branches. The performance of 
equations (12) and (35) can be however criticized for its memory 
requirements and fill-in for a large number of nonlinear 
branches within large linear networks. The computational effort 
is then reduced by isolating (when possible) several nonlinear 
branches in a nonlinear circuit. This isolation is achieved through 
a limited number of port variables seen in the main linear circuit. 
The nonlinear circuit is simply a multiport nonlinear branch that 
assembles and solves its own set of linear equations and hybrid 
equations. A set (more than one) of nonlinear branches located 
in the same subnetwork (coupled through hybrid equations) has 
also been designated as a nonlinear circuit in this paper. 
Isolation is naturally provided by specialized network 

equipments such as power converters, static compensators or 
other sophisticated multiport circuits. The pre-specified 
establishment of the nonlinear circuit borders is intended to limit 
the number of interconnections with the surrounding linear 
circuit, while concentrating the largest possible number of 
non linearities. 

7. NUMERICAL EXAMPLE 

The proposed new method (NM) is numerically verified for the 
non linear circuit of Figure 2. It is a simple high-voltage six-pulse 
power converter circuit. The surrounding network is assembled 

in the EMTP (including filters) and shown in its discretized 
Thevenin equivalent form. The surrounding network sees the 
nonlinear circuit as 4 (3 ac side and 1 de side) nonlinear current 
ports. The short-circuit ratio of the ac network is =6 . The 
current control is provided through the EMTP TAGS module. The 
transformer and other not shown data can be found in [7]. The 
valves are modelled as ideal switches. This test case includes 
ac filters composed of the paralleled branches Rg: - L'iF - c.,. 

1 1 •1 

and R<J. - L'!F - C<J. where R,,. = 1og, L,,. = 1.104H 
1 1 2 ;rf <1"1 t 

c'!F, = .255µF and C'!f
2 

= .130µF. 

After assembling equation (12) for this now reduced circuit, 
equations (14) and (15) are automatically generated. The hybrid 
equations are calculated according to the converter operating 
modes and the reformulation method. The following methods 
must be considered : 
1 o no reformulation, unless necessary; 
2o a maximum number of conducting valves is transferred into 

tree branches; 
3o same as 2o but storage of matrices M' and M" for repetitive 

operating modes. 
In method 1 o when hybrid equations are calculated for a 

maximum number of voltage ports (valves 1 to 4 are voltage 
ports) then conditioning of M' remains acceptable for almost all 
converter modes. Reformulation may still be necessary for 
some extremely abnormal modes. If for example, the valves 1 
to 4 are conducting and valves 5 and/or 6 are fired, then M' is 
ill-conditioned and it is necessary to transfer the conducting 

current ports (valves 5 and/or 6) into the branches of 'ff. The 
maximum size of M' is 9x9, considering that the transformer 
current-flux characteristic is nonlinear. 

In method 2o the hybrid equations are recalculated at each 
topological change. Although this method has an overall slower 
performance, since it requires frequent reformulations of the 
hybrid equations, it is more general than 1 o because there is no 
presumption on the performance with the maximum or minimum 
number of voltage ports. This method is also in accordance with 
the varying topology method reformulation strategy. The 
purpose of method 3o is merely to improve the performance of 
2o over 1o specially in long simulation cases. Although the 
efficiency of 3o is closely linked to the actual programming of 
memorized matrix extraction and rearrangements, it has been 
noticed that for the test case of Figure 2, when only standard 
repetitive operating modes are encountered, method 3o has a 
=40% performance increase compared to 1 o. This number will 
decrease to ""10% when matrices M' and M" are also 
memorized for method 1 o . Further research is needed to be 
able to prescribe one method or the other for a general circuit : 
it is a matteroftradeoffbetween the sizes of M' and M" and the 
time required to bring in new matrices at every commutation of 
a given circuit. 
The simulation results are presented in Figures 3 and 4 and 

compared with the standard EMTP method, where the complete 
simulated network is assembled as usual. This comparison has 
been made possible by enabling EMTP to model valves as ideal 
switches with no artificial numerical snubbers in parallel. The 
snubbers were necessary to eliminate numerical oscillations 
caused by current discontinuities. The discontinuities are now 
suppressed using halved time-step Euler backward integration 
[13] within the trapezoidal method. This is a new option ( not 
available in the current EMTP version V2 [5] ) that has been 
recently [14] implemented in a developer's version for future 
release to the general EMTP users. 
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Figure 2 The tested nonlinear circuit 
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Figure 3 Current Ice (see Figure 2) 
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Figure 4 Converter phase a current before filters 

The objective of Figures 3 and 4 is to validate method NM for 
modelling valves as ideal switches and all the corresponding 
automatic solution algorithms.The fast initialization presented 
and discussed in [7], is achieved through the interface with the 
main system of linear equations, by predicting history terms at 
simulation startup and iterating to find the most likely valve 
conduction states. This capability is one more advantage that 
cab be exploited in the nonlinear circuit concept. In the EMTP the 
initially conducting valves are predicted manually and there is no 

initialization algorithm. The performance ratio of the NM over 
the EMTP (it is estimated that NM is 3 times faster than EMTP 
for the shown test case) increases with the size of the 
surrounding network. At each change of valve state the EMTP 
requires complete retriangularization of its large Y n , contrary to 
the NM which reformulates only a reduced set of hybrid 
equations. It must be recalled that the generality of hybrid 
equations in the NM also allows usage of nonlinear equations 
for valve models. 

CONCLUSIONS 
This paper applied hybrid analysis for solving nonlinear circuits 

in the EMTP. It demonstrated how to extract hybrid equations 
from nodal or modified nodal analysis without preliminary 
knowledge of the topological proper-tree. The hybrid equations 
have also been applied to simulate varying topology networks. 
The simple concept of hybrid analysis has been theoretically 
linked to sophisticated conventional varying topology methods. 
A typical nonlinear circuit has been solved and compared with 

the EMTP results. 

APPENDIX A 
. THE HYBRID EQUATIONS FOR THE CIRCUIT OF 

FIGURE 1 

When Vv = [ V,p1 v,p2 v,p3 ]t (3 voltage ports) and 
A 

11 = i,p4 then equation (1) results in : 

(A.1) 

If the linear branches connected to the nodes of v 1 and v2 are 
1 O Q resistances and the linear branch between the nodes of v 3 
and v4 is a 5 Q resistance, then : 

V1 (A.2) 

.2 0 0 0 - .1 0 0 0 - 1 V2 0 

0 .2 0 0 0 - .1 0 - 1 0 V3 0 

0 0 .2 - .2 0 0 -1 0 -1 0 
V4 

0 
V5 

0 0 - .2 .2 0 0 0 0 1 V5 0 

0 -1 0 0 0 0 0 0 0 
'<P1 vt/>1 

0 - 1 0 0 0 0 0 0 0 

'"'2 
vt/>2 

0 1 - 1 0 0 0 0 0 0 0 

'"'3 
vt/>3 

- 1 0 0 0 0 0 0 0 0 vt/>4 
'"'4 

Gaussian elimination stops at the 4th column. The final result is: 

1 0 0 0 - .5 0 5 0 0 

0 1 0 0 0 - .5 0 - 5 5 

0 0 1 - 1 0 0 - 5 0 -5 

0 0 0 1 - .5 0 5 0 0 

0 0 0 0 0 0 -5 0 -5 

0 0 0 0 .5 - .5 -5 -5 5 

0 0 0 0 0 0 -5 0 - 5 

0 0 0 0 0 0 0 5 0 

-5 
0 

0 

-5 

0 

5 

0 

5 . 

V1 

V2 0 
V3 

0 
V4 
V5 0 

0 

0 

0 

(A.3) 
0 0 

0 0 

0 0 

v 6 _,__o ________ , 0 0 1 vt/>2 ~·' i - 1 
t/>1 0 

1
<P2 0 

0 0 1 vt/>3 
0 - 1 

v"'" 
1 1 0 

'"'3 0 - 1 - 1 0 

it/>4 

where rows 4 and 8 have been exchanged to avoid the 
singularity of the linear network matrix. Nonlinear port equations 
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are now decoupled from the linear network equations and after 
rearranging, according to port identity, they are given by : 

[

- .1 0 .1 1]~;1 
[ .OS - .OS] (A.4) o - .2 - .2 - 1 V;2 + o o fYs] 

.1 - .2 - .a - 1 V;3 - .os .os lv6 
- 1 0 ,,4 0 0 

APPENDIX B 
TEST CIRCUIT FOR FINDING PORT IDENTITY 

The studied circuit is shown in Figure B.1, it is a simplified (for 
demonstration purposes) version of a six-pulse power 

converter. The port variables are l+ = [ l1 l2 l3 l4 l6 l6 l7 ]t, 

Yq, = [V1 V2 V3 V4 V5 V5 V7]t and v. =[Va vb Ve ]t. The 

ports 1 to 6 are for valves 1 to 6 respectively. The 7th port is an 

artificial port ( 17 = O ) connected from the V(j node to ground 
and used to avoid singularity for the linear equations. This 
artificial port is added for demonstration purposes only, since 
other exchange pivots are available. The circuit data is : 
Zeq = 0.10 and RL = 100 . 

.------VJ" 
3 5 

4 6 2 

-----V(j 

Figure B.1 Simplified six-pulse power converter circuit 

Equation (15) is found to be : 

[
-~o~g g -~o~~ ·g = ~g -~ g] A 

- 10 0 - 10 0 - 10 0 0 •• = 
- 10 .1 - 10 0 - 10.1 0 0 
- 10 0 - 10 0 - 10 0 0 
-11 -11 -111 

~~======~~~======~;:! 

rr 

[

1000001] 0 1 0 0 1 0 0 
0 0 1 0 0 0 1 A 

1 0 0 1 0 0 0 v, + 
0000101 
0 0 1 0 0 1 0 
0000000 

~ 

[
- ~ _ ~ g ][Val o o o vb 

0 0 -1 v 
0 0 0 c 
0 0 0 

~ 
qr r 

(B.1) 

The reduction to identity of matrix qr is applied to find a minimal 
number of voltage ports : 
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[

- 10.: - .: --1~ .: -~-~ ~ ~] 
.1 0 - .1 - .1 0 .1 0 A 

- 10 0 - 10 0 - 10 0 0 •• 
.1 .1 0 - .1 - .1 0 0 

- 10.1 0 - 9.9 .1 - 10 - .1 0 
- 10.1 0 - 10 .1 - 10 0 0 

~~========::::~===========;::' 
IT' 

[
-r ! ~ g g g g l A [- ~ - ~ ! • [ ~va: l 1 0 0 1 0 0 0 v, + 0 0 0 
-1000100 1 0-1 

1000010 -1 1 0 
1000001 -1 0 0 

(B.2) 

~~ 
IP' f' 

The null pivot appearing in the first column of IP' indicates that 
valve 1 is a voltage port, which is in agreement with the 
proper-tree of this circuit. The hybrid equations are found after 

exchanging columns of t1 and V1 and isolating [iv V1 ]t 
A 

0 1 1 -1 1 
A 

11 - 1 V1 
A A 

V2 -1 - 10.2 .1 -10 .2 - 10.1 12 
A 

V3 .1 - .2 0 - .1 .2 13 
+ 

V4 -1 - 10 0 -10 0 - 10 14 
A A 

V5 .2 - .1 0 - .2 .1 15 
A A 

V5 - 1 -10.1 .2 -10 .1 - 10.2 15 

0 0 0 

0 - 1 

-1 0 

~:] (B.3) 
0 0 0 

- 1 0 

1 - 1 0 

A 

Since /7 = 0 for the artificial port, the equation for V7 is 
supplementary. 

APPENDIXC 

EXAMPLES OF VARYING TOPOLOGY REPRESENTATION 

In the test circuit of Figure B.1 all valves are modelled as ideal 
switches. If only the valves 1 and 2 are conducting and modelled 
as voltage ports, then the following equation is found from 
equation (B.2) 

A 

I 1 .0980 0 - .0980 
A 

I 2 .0980 0 - .0080 

- .9902 1 - .0098 
(C.1) 

- .9004 0 .9804 

- .9004 0 .9804 

v 6 .0008 - 1 .9902 

In this case matrices M' and M" are both zero. 
If valves 1, 2 and 3 are conducting and only valve 1 is modelled 

as a voltage port, then equations (25) and (26) are found from 
(B.3): 



[ ~02 - ·'][~] 
.1 .2 13 [ - : 0 -: J[~: l (C.2) 

~ 
M' 

I 1 - 1 0 0 0 
A 

~:] [~: l V4 10 0 0 0 0 
A + (C.3) 
V5 - .2 .1 -1 0 
A 

v6 10.1 - .2 1 - 1 0 

~ 
M" 

Since valves 1, 2 and 3 can belong to the proper-tree branches, 
it is feasible in this case to find hybrid equations where M' and 
M" are both zero. It must be concluded that the reformulation · 
strategy depends on the previous operating mode and the 
efficiency of the reformulation programming. 
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