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ABSTRACT

In a deregulated system, the income of a power
company will strongly depend on the spot price,
which may vary considerably in a system dominated
by hydropower, like the Scandinavian. The aim of
the present paper is to present a new algorithm
that can deal with spot price uncertainty, for use
in stochastic mid-term scheduling. The algorithm is
a combination of stochastic dual dynamic program-
ming and stochastic dynamic programming. The al-
gorithm may have applications in small to medium-
sized power companies.

1. INTRODUCTION

The background for this work is that in a deregu-
lated system, the income of a power company will
strongly depend on the spot price in the system,
which may vary considerably and cannot be pre-
dicted accurately. Therefore price uncertainty should
be taken into account in scheduling. In the present
paper, we describe an algorithm to take price un-
certainty into account in medium-term hydrother-
mal scheduling. The algorithm is a combination
of so-called stochastic dual dynamic programming
(SDDP) [1, 2] and ordinary stochastic dynamic pro-
gramming.

We consider a small or medium-sized company, so
that its decisions do not influence the spot price.
Thus, we can regard the spot price as an externally
given function. This assumption is valid for many
Norwegian power companies. It is assumed that the
objective of the scheduling is profit maximisation.
The scheduling results are mainly used in setting
end-point marginal values for short-term scheduling,
and also in maintenance scheduling.

The spot price depends on several factors, but in
the Scandinavian system a main variable is the to-
tal energy stored in water reservoirs throughout the
“global” system of Scandinavia. Based on this, fore-
casts can be obtained.

We take price fluctuations into account by includ-
ing in the scheduling model a very simple stochastic
model for the spot price. The parameters of this
model are derived from price forecasts.

The main goal of the present paper is to present
the solution algorithm that we have developed. We
also give a small numerical example. An application
of this algorithm has been described in [3].

2. SYSTEM MODEL

We here give a brief description of the system
model used. A finite time horizon is used, usually
one to three years ahead. The study period is di-
vided in discrete time steps numbered 1,..., T, usu-
ally of length one week. At the horizon ¢t = T end
conditions must be given, for instance as marginal
values of stored water.

2.1 Power station model

For a power station we assume that
P = f(q)h/ho (1)

where f(q) is a piecewise linear function, specific for
each power station; P is the energy generated from
release g, h is the water head, and hy a nominal
reference head.

The algorithm to be described cannot deal directly
with variable head; the head correction factor in (1)
must be applied with estimated values of h. In many
Norwegian power stations this is a fair approxima-
tion. We believe that optimising directly with vari-
able head may lead to nonconvex problems.

Thermal generation is modeled as a set of buying
options, each with a fixed marginal cost.

2.2 Reservoirs and inflow

At the end of a given time step the system can
be characterised by its state vector x;, which typi-
cally contains the contents of all reservoirs. There
may also be other states in z;, such as inflow states
[1, 4], but these will not be explicitly written out
here. The price state will be dealt with separately.
Further, we let u; denote a vector of decisions for
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time step t, typically containing water releases, over-
flows, thermal generation and transactions outside
the spot market. We write the water balances and
other state transition equations in the general form:

zy = Fyoy + Guug + & fort=1,...,T, (2)

where F; and G; are system dependent matrices. The
vector & describes the the inflow.

Since we deal with medium-term scheduling, the
inflow must be treated as stochastic, and we approxi-
mate the distribution of & by the discrete probability
distribution

P& =)=y, k=1,...,K. (3)

The parameters in (3) are estimated from histori-
cal inflow records. To apply dynamic programming,
& and &_, must be independent for all ¢. If this
is not the case, the dependence must be modeled
and included in (2), and & will then denote the in-
dependent stochastic variable of this model. In our
implementation we use a multivariable version of the
linear autoregressive inflow model in [4].

2.3 Power balances and objective function

We assume that the power system under consider-
ation is within one area with a single energy balance.
We define, for t =1,...,T:

y; ~ Sale to the spot market
y; - Purchase from the spot market
p; — Spot price (weekly average)

d; — Transmission charge

d; — Firm power demand

¢; — Cost vector associated with wu;.

The power balance equation can be written
Ay —y +y; =dp for t=1,....T. (4

The term A;u; represents the hydro and thermal gen-
eration, corresponding to the piecewise linear power
station models. The firm power demand d; is con-
sidered deterministic; it is zero in the case where all
generation is sold in the spot market. For short we
define a transaction vector y = [y;",y; ]. The cost
for one realisation in one time step is then:

Li(us,y:) = ¢l ug + (oo + 8)yr — (e — 0)y (5)

The value of the water remaining in the reservoirs
at the horizon must be subtracted from the cost. Let
this value be given by a function ®(z7). We estimate
®(zr) from water value computations on an aggre-
gate model in the long-term scheduling process [5].
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Figure 1: Variation of spot price 1995-1998 (weekly
average).

2.4 Summary of model

The model can then be summarised as follows:

T
min F {Z L; — <I’(1'T)} (6)

subject to the constraints

zy = Fizeo1 + Grue + & (7
Apug + Brye = dy (8)
T, <z ST (9)
uy Sug S Ug (10)
Y, <yt <7 (11)
for =1,...,T and zy given.

The expectation E is to be taken over both inflow
and price. Equation (8) contains the power balance;
in general it may also include other constraints that
are not coupled in time. A; and B; are matrices of
suitable dimensions (in the above presentation they
would be row vectors). Reservoir limits, equipment
ratings etc. are contained in (9) — (11).

3. PRICE MODEL

3.1 Overview

Figure 1 shows the variation of the spot price in
Norway during the last few years. In modelling the
spot price, we use forecasts obtained by simulations
with the so-called EMPS model [6], which is a long-
term model covering several years. Analyses of such
price series, described in [7] show that:

1. There is a strong serial correlation between the
price in a given week and the price in the fore-
going week.

2. For a “local” system it is difficult to find a sig-
nificant correlation between local inflow during
a week and the spot price for the same week.
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Property 1) means that to apply dynamic pro-
gramming, which requires that stochastic terms are
sequentially uncorrelated, it is necessary to introduce
a state space model for the spot price.

Further, it is necessary to establish a joint prob-
ability distribution for price and inflow for the next
time step, given the present state. Based on property
2) above, we take the stochastic processes for inflow
and price as independent of each other, and use the
marginal probability distributions for each. A better
distribution would be hard to estimate.

On the other hand, if one looks at a time span
somewhat longer than one week, the average price of
the interval will certainly depend on the accumulated
inflow during this period, and this is not taken into
account. Therefore, in the algorithm to be described,
values from the inflow-price scenarios are used di-
rectly in the forward run of the SDDP part of the
algorithm, as a heuristic to take this into account.

3.2 A spot price model

It is assumed that a spot price forecast is available,
in the form of price scenarios. When the price sce-
narios have been obtained by the EMPS model, each
scenario corresponds to an historical inflow sequence.

We regard the spot price p; as a state. The price
axis is discretised into a set of M points (1,...,(ar,
and we use the following discrete Markov model:

Pr(py = (jlpt-1 = () = pij(t) forall 4,5 (12)

where ¢ and j runs from 1 to M. This means that
pi;(t) is the probability that p; = (j, given that p;_;
was (;, for all 7 and j.

Note that the price can take only discrete values.
This is done in order to simplify the implementation
of dynamic programming. This introduces some dis-
cretisation error, but we have not tried to estimate
this error.

3.3 Fitting the price model

The numerical values of the transition probabili-
ties for price changes between week ¢t — 1 and week ¢
are established the following way:

First, the price values within each week are
grouped in M groups, and (; is taken as the mean
value of the i-th group. In this way, the discrete
price points are established for each week in the data
period. It is recorded which scenarios go into each
group in each week, and p;; is then estimated as the
fraction of the scenarios from the i-th group at time
t — 1 that belong to group j at time t.

4. SOLUTION METHOD

4.1 Overview

We have chosen to work with a combination of
stochastic dual dynamic programming and ordinary

stochastic dynamic programming. The ordinary
SDP part is introduced to take care of the price pro-
cess, which is modeled as described above. The reser-
voir and inflow states are treated as continuous vari-
ables and dealt with in a way similar to the ordinary
SDDP algorithm.

Another way of dealing with the price process
would be to describe it by a scenario tree. This tree
would become very large, however, so instead, we
consider the discrete price model described above.
Due to the term p;y; in (5) the cost function is a
non-convex function in p; and y;, and so it is impos-
sible to model the dependence of the expected future
cost functions on p; using hyperplanes the same way
as for the state x;.

As already discussed, the correlation between in-
flow and price one week ahead is neglected. However,
in this extension of the SDDP algorithm, we use a
modified approach, in that on the forward run of the
algorithm, we use the “observed” inflow-price scenar-
ios. This heuristic can be debated. It is intended to
preserve any coupling between inflow and price when
averaged over longer periods, but it may lead to gaps
between upper and lower cost estimates. This is be-
cause on the backward run, we use a Markov model
that has been estimated from the price series, and
this model may not give exactly the same average as
the “observed” scenarios.

4.2 Dynamic programming approach

We now consider a time interval ¢, with the initial
state given by z;_; and p;—; = p{_;. There are K
realisations of the inflow noise &; and for each of these
M possible price values p;. We assume here that we
learn ¢ and p] immediately before the decisions for
this time step are to be carried out. Let a;(z;|p]) be
the expected future cost function at the end of time
period ¢, given the system state z; and p], that is, the
expected cost in going from the given state at the end
of time interval ¢ to an allowed final state using an
optimal strategy. Applying the Bellman optimality
principle, we obtain the recursive equation

at~1($t—1lp§~1) =
M K .
Z Z PijYr min [Lt(ut, ye) + at(xtlpg)]
J=1 k=1
for all t and 7, (13)

where the constraints (2) — (11) must be satisfied for
each transition. For each possible outcome (¢F,p?)
separate decisions u? ytkj are made, and the final
state obtained is z}7.

In the description of the ordinary SDDP algorithm
(1, 2] it is shown that with a linear model, the ex-
pected future cost functions are piecewise linear func-
tions of z and can be represented by hyperplanes in
the z state space, which also means that these func-
tions are convex. We now show that this is also so
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in our slightly more complicated case. Assume that
ai(z4|p]) can be represented by hyperplanes; then
we proceed to show that this is also the case for
a1 (ze-1]Pi_y). _
We define af? | (z,_1) = min[L;(us, yr) + (24| p7)]
n (13). Under the above assumption on hyperplane
representation, (13) then decomposes into single-
transition subproblems of the following form:
Given =41, pr—1 = pi_,, pt = pj and & =

ol | (5o1) = min [Lo(un,ye) o] (14)

&k, find

subject to
xy — Grug = Fyopq + & | '”fj (15)
Aguy + Bryy = d¢ (16)
z, Sz < Ty (17)
u, <up < (18)
Y, Syt < Ty (19)

+ Tz > A
: (20)
at Wz > A"

In (20) u{l, ... ,,U,{R and 'ygl, ... ,fyth give the R hy-
perplanes that define the expected future cost func-
tion at the price point p]. For equation (15) we have
indicated the corresponding dual variable ﬂf 7. We
then obtain from (13)

M K
at—l(zt—llpi—ﬂ:Zzpuwkat (@e-1). (21)

j=1k=1

We assume that the single-transition subproblem de-
scribed in (14)—(20) has a feasible solution; this can
be ensured by artificial variables. The problem is
similar to that of the ordinary SDDP algonthm and
it therefore follows from [1, 2] that o}’ (z,—1), the
objective function of the subproblem, is a convex and
piecewise linear function of the right-hand side com-
ponent T¢_1.

We have Zk 12; L Yrpi; = 1, and ¢ and py;
are nonnegative for all k£ and ¢,j. Thus, by (21)
as_1(m¢—1|pi_,) is a convex combination of convex
functions, and therefore convex, and in this case
piecewise linear, and therefore it can be represented
by hyperplanes. At ¢t = T, « is identical to ®(z¢),
which is piecewise linear and convex, then by in-
duction from ¢ to t — 1 we conclude that all future
cost functions can be properly represented by hyper-
planes, usually referred to as cuts.

The number R of hyperplanes necessary to repre-
sent an expected future cost function, will usually
be very large. Therefore, the hyperplanes are built
iteratively, as in the ordinary SDDP algorithm.

A solution to the single-transition subproblem
(14)-(20) with z;—; = =zj_;, say, contributes to a

price
b cuts

? cuts

cuts

A cuts
t1 t time

Figure 2: View of the dynamic programming part of
the combined approach, in the time-price plane

cut for a1 (ws—1|pi_,) at time ¢ — 1 through its vec-
tor of dual variables. From [1] and duality theory for
linear programming we can establish that for general
Tg—1:

ol (z4-1) > el (i) +mf Fy(zo—3i_y). (22)

Averaging according to (13) gives the new cut at time
t—1:

ap1(Te1|pi_y) > oy (25) + TP Fy(zeo1 — 7_4),
(23)

where 7 = Zk 12 1,0131/%71} and af®; =
j=

Zf:l Z]le Pij¢kat—1(ft—1)-

We note that the price of the previous week, p}_,,
does not enter the subproblem. Therefore, in (13)
it is not necessary to solve the subproblem for all
M? combinations of 7 and j. One solves for the M
different p}; then p} comes in through averaging with
the transition probabilities p;;.

To visualise the approach, the price dimension
used in the new algorithm is shown schematically in
Figure 2. At each discrete price point there is a set of
cuts representing the expected future cost functions,
instead of a single number in table-based dynamic
programming.

4.3 Algorithm

One main iteration of the algorithm consists of
a forward simulation with the strategy developed
in the previous iterations and a backward recursion
based on (13) where the strategy is updated by gen-
erating more cuts. Since we now use only a subset of
all cuts, we shall write @ instead of a to show that
we deal with approximate future cost functions only.
The algorithm is:

1) Initialisation
Set J := oo (a large value). Create a set S* of
scenarios for inflow and price. This can be done
by sampling randomly from the inflow distribu-
tion. As a heuristic, we here use “observed”
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scenarios of inflow and price. £ and p§ are as-
sumed given and common to all scenarios (this
means that the price and inflow for the first time
interval is considered known). Initialise R; = 0,
t=1,...,T.

2) Forward simulation
For each scenario the system is simulated for-
ward in time:

Repeat fort =1,...,T
Repeat for all s € S*
Let ;1 = zj_; and & = &
Chose p; as the value p] closest to pS
and solve the single-transition problem
(14)—-(20) giving u{ and y;.
Store z and Li(uf,yf).

Compute the operating cost
T
J* =" Li(uf,yi) — ®(z%) forall s € S*
t=1

Let p° be the probability for scenario s, and

compute
E{J}= > pJ*
SES*
Update the upper limit for average operating

costs: _ _
J :=min(J, E{J})

3) Backward recursion

Repeat for each time step, t =T,7 - 1,...,1
Repeat for j =1,..., M (loop over p})
Let p; = p;
Repeat for each z{_;,s € S*
Repeat for each noise value k = 1,..., K
Let & = &F and solve the single-transi-

tion problem (14)—(20). Save the optimal

objective value @7 | (z5_,) and dual
variables wfj for the transition equation
(15).
Repeat for i = 1,..., M (loop over pi_,)
Repeat for each zj_,,s € S*
Compute

K M
—1is __ kj
Ty —E E Pij
k=1 j=1
and
K M
~is  __ . ~kj s
Qg = E Zpljwkat—l(xt—l)
k=1j=1

and create a new cut for a;_1(z—1|pi_,)
of the kind (20) with

piy = —@)T R
Wy =apr, - (7)) R,
Let Ry = R; + 1.

At t = T one has instead of (20) a similar rep-
resentation for ®(z).

An estimate of the future cost at the beginning
of the first interval becomes

ao = min(L;(us, yi) + Q1)

where @; refers to the value at the end of the first
interval (in the first interval a single realisation
was assumed). This is a lower bound since only
a subset of the cuts are created at each stage.

4) Control of convergence.

J = @ is a lower limit for expected operating
costs J. An estimate of the upper limit is given
by J from the forward run, and in the end J
and J should meet. Due to the sampling of sce-
narios, J will have a sampling variation, so that
J—J does not reach zero exactly; it is even possi-
ble that J < J. A possible criterion is therefore
to stop when | J —J | is comparable to the stan-
dard deviation of J, ensuring that a minimum
number of main iterations in the algorithm has
been carried out. In practice, though, we often
carry out a specified number of iterations.

4.4 Computational issues

Apart from the “outer” dynamic programming
treatment of the spot price state, the approach is
similar to that of the ordinary SDDP algorithm, and
the same computational approach can be used for
this part. To solve the single-transition subproblem,
we use a relaxation approach, as in [4]. Thus, the
LP problems actually solved are quite small. There
is a limit to the number of cuts allowed for each of
the M price values; after that, cuts are overwritten.

A set of initial scenarios are assumed to be avail-
able at the start of the solution process, so that we
can start with the backward recursion step of the al-
gorithm (step 3). The inflow loop is put innermost in
the algorithm, since this only changes the right-hand
side of the single-transition problem. Each problem
with a new inflow is started from the basis of the
previous one. When the price p; changes, both the
cost row and the set of cuts changes; in this case, an
all slack basis is used for start.

5. A SMALL EXAMPLE

Figure 3 shows a small test system. The power sta-
tion ratings are given in MW and inflows and storage
capacities are in million cubic meters. For the case
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/ 12,0
Reservoir A
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Reservoir B
64 Mm?

Reservoir C
66 Mm?

50 MW

Reservoir D
10 Mm?

Figure 3: System for test case.

that we show here, the study period is almost three
years, beginning in week number 14 in the first year,
with reservoirs 25 per cent full. All power is sold in
the spot market. 50 price scenarios are used; they
are obtained from a run with an EMPS model of the
Scandinavian system. The transmission charge d; is
one per cent of the price p; for all . We have car-
ried out computations for M = 5 price levels and for
M =1.

The results to be used from such a computation
are the expected future cost functions at the end of
the first week, that is, the cuts describing @ (z1|p])
for all j. They can be transferred directly to a short-
term scheduling model.

Although it is not used directly, it is interesting
to look at the strategy that the algorithm uses over
the rest of the study period. We first consider the
case M = 5. Total storage in GWh from the fi-
nal forward simulation in step 3 of the algorithm is
shown in Figure 4. The curves give the probability
distribution of total stored energy in the form of per-
centiles (10,25,50,75,90). This can be regarded as a
“parallel” simulation of the various inflow/price sce-
narios from the given starting point. The 10 per cent
curve in the figure gives rather low storage compared
to the mean (note that the curves give percentage
points for each week and not trajectories), and this
is below what is considered ordinary practise. This
is a common experience with several test systems;
the reservoirs run relatively low in some cases where
prices are high over a longer period.

500

400

300

200 r

Total storage (GWh)

100 r

2 i

0 78 104 130
Time, weeks

Figure 4: Percentiles for total stored energy, M =5
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400 r
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Total storage (GWh)

100

0 26 52 78 104 130 156
Time, weeks

Figure 5: Percentiles for total stored energy, M =1

To indicate what would happen without a price
model, we have run the system with a price model
with M = 1, corresponding to the mean value. The
same percentiles as above for this case are displayed
in Figure 5. We see that the variation in reservoir
content is larger on the low side, and we also note
that the operation is significantly different the last
year. Also, we find that there is more spillage. Of
these two cases, one would say that the use of a price
model (M = 5) gives the most reasonable operation.
However, simulations of this kind are not fully real-
istic. One reason for this is that the horizon is fixed;
we simulate the strategy as obtained standing at the
initial week, not considering that the horizon moves
and the updating of the price forecast and the strat-
egy that would take place in real operation. Espe-
cially in the case of scheduling against a mean price
forecast (M = 1), updating would be important

6. DISCUSSION

Use of the above algorithm has been implemented
as an option for mid-term scheduling in the long-
term scheduling model EOPS [8]. It is intended for
small to medium-sized systems. The main advantage
of such an algorithm (as with the ordinary SDDP
algorithm) is that one can optimise with a detailed
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model of the hydropower system, so that one obtains
incremental water values for each reservoir. The al-
gorithm has been tried on several test systems, with
sizes ranging from 4 to over 50 reservoirs. Schedules
may differ from those of the long-term model, as was
exemplified in the case in [3].

The computing time depends on the number of
time steps, the number of inflow scenarios, the num-
ber K of inflow cases, and the number of discrete
points in the price model. For the test case, the
computation time was about 15 minutes on a ma-
chine running Unix, but for larger systems a typical
time is one to two hours.

A special problem is that of constructing the final
value function ®(zr). We have used results from
an aggregated long-term model of the system for
this purpose, so that ® is a function of total stor-
age. However, this may underestimate the value of
water in well regulated reservoirs and overestimate
the value in the others. Difficulties arise when there
are long-term reservoirs that store water for several
years. This could be partially corrected for by im-
posing more constraints; another way would be to
move the horizon far enough away, at the expense of
computing time.

Another difficulty is with the fitting of the price
model. From “observed” series created from the
long-term model only about 50 scenarios are avail-
able, and this gives rough estimates of the transition
probabilities. This could be improved by generating
a large number of synthetic inflow scenarios and ob-
taining price forecasts from the long-term model for
all of them.

The scheduling algorithm is intended for use from
a given initial state at a given time. It would be
very interesting to evaluate the economic gain result-
ing from the new algorithm with the stochastic price
model; for this purpose its use over a long period (50
years, say) might be simulated, so that results with
and without the stochastic price model could be com-
pared. However, this is not possible at present. One
reason for that is the long computation time.

7. CONCLUSION

In this paper, we have given an algorithm whereby
spot price stochasticity can be taken into account in
stochastic scheduling. We believe that the combi-
nation of ordinary stochastic dynamic programming
and stochastic dual dynamic programming is new. A
disadvantage with the method is that the computing
time is long; on the other hand, the medium-term
scheduling is an application where this can be toler-
ated.

It is not computationally feasible to carry out
the computer simulations necessary to quantitatively
give a measure of the improvement in operation that
the new algorithm may give, but it seems that the
results are positive.

Among the areas for future work are improved
price modelling; also a reduction in computing time
would be desirable.
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