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Abstract – Under a market framework, the develop-

ment of optimal offering strategies is crucial for wind 
power producers to achieve maximum profit. In this pa-
per, a two-stage stochastic programming approach is 
proposed, considering the uncertainties on wind power 
production and electricity market prices. An artificial 
intelligence model allows generating wind-price scenarios. 
Also, risk management is appropriately addressed. Results 
from a real-world case study are presented, in order to 
illustrate the proficiency of the proposed approach. Final-
ly, conclusions are duly drawn. 

Keywords: Generation, Wind energy, Risk, Uncer-
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1 INTRODUCTION 
Wind generation levels are growing in power sys-

tems around the world in response to increased pressure 
to reduce CO2 levels and dependence on fossil fuels [1]. 
A high penetration of wind power into the electric grid 
is taking place, in countries such as Denmark, Spain, 
and Portugal. Unlike hydro or thermal systems [2], 
which are traditional dispatchable power sources, wind 
power is undispatchable [3] and constitutes a major 
source of uncertainty in the planning and operations of 
power systems. 

All over the world, the electricity industry is shifting 
from regulated to competitive. Until recently, the elec-
tricity industry was viewed as a natural monopoly, or-
ganized as regulated and vertically-integrated. Nowa-
days, the electricity industry adopted a market frame-
work, thus introducing competition between producers 
for selling electric energy to consumers. Under this 
market framework, the development of optimal offering 
strategies is crucial for wind power producers to 
achieve maximum profit. 

Electricity prices present high volatility, reflecting 
the dynamic behavior of the market. Moreover, the 
power supply generated from wind energy is highly 
intermittent. Thus, decision-makers must hedge against 
the uncertainties on wind power production and elec-
tricity market prices, while taking into account the sev-
eral technical constraints associated to the operation of 
the wind farm. 

To consider the uncertainties on wind power produc-
tion and electricity market prices requires stochastic 
programming. Hence, a two-stage stochastic program-
ming approach is proposed, dividing the set of decisions 
inherent to the problem into two distinct stages. 

The aforementioned uncertainties were handled in 
[4] through traditional time-series models. Instead, an 
artificial intelligence model is considered in this paper 
to generate wind-price scenarios.  

Risk management is also incorporated in the pro-
posed stochastic programming approach, as in [4], by 
limiting the volatility of the expected profit through the 
conditional value-at-risk (CVaR) methodology [5]. 

The proposed approach allows generating the optim-
al offers that should be submitted to the day-ahead mar-
ket by a wind power producer, in order to maximize its 
expected profit assuming a given level of risk. Imbal-
ance penalties are imposed to prevent gaming and to 
secure better system operation.  

The experience with the implementation of the pro-
posed two-stage stochastic programming approach on a 
realistic case study, based on a wind farm in Portugal, is 
reported. Finally, conclusions are duly drawn. 

2 PROBLEM FORMULATION 

2.1 Risk Management 
CVaR represents an appropriate approach to address 

the integrated risk management problem of a wind pow-
er producer. Previous approaches [6]-[8] did not con-
sider risk management.  

CVaR is the expected profit not exceeding a measure 
ζ  called Value-at-risk (VaR): 

 )|(CVaR ζ≤= BBE  (1) 

VaR is a measure computed as the maximum profit 
value such that the probability of the profit being lower 
than or equal to this value is lower than or equal to 

α−1 : 
 ( ){ }α−≤≤= 1p|maxVaR xBx  (2) 

The value of α  is commonly set between 0.90 and 
0.99 [9]. In this paper, α  is considered equal to 0.95, as 
in [4]-[5]. 

Mathematically, CVaR can be defined as: 

 s

S

s
sηρα

ζ ∑
=−

−
11

1max  (3) 

subject to: 
 0≤−+− ssB ηζ  (4) 

 0≥sη  (5) 

The concept of CVaR is illustrated in Figure 1. 
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Figure 1:  VaR and CVaR illustration. 

In (4), sη  is a variable which is equal to zero if sce-
nario s  has a profit greater than ζ .  For the remaining 
scenarios, sη  is equal to the difference of ζ  and the 
corresponding profit. 

VaR has the additional difficulty, for stochastic prob-
lems, that it requires the use of binary variables for its 
modeling.  

Instead, CVaR computation does not require the use 
of binary variables and it can be modeled by the simple 
use of linear constraints. 

2.2 Objective Function 
The risk-constrained profit-maximization decision-

making problem faced by a wind power producer within 
the market framework can be summarized as: 
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The objective function (6) to be maximized includes 
the expected profit, the operational costs, and the CVaR 
of the profit, where S  is the set of scenarios, sρ  is the 
probability of occurrence of scenario s, H  is the set of 
hours in the time horizon, shλ  is the forecasted electric-
ity market price in scenario s in period h, hsp  is the 
power output of the wind farm in scenario s in period h, 

shdevP  is the penalization for deviation of the wind 
farm in scenario s in period h, ihb  is the operational cost 
associated to wind turbine i at period h, ihg  is the pow-
er output of the wind turbine i in period h, and β  is the 
weighting parameter to achieve an appropriate tradeoff 
between profit and risk. 

The deviations are measured in absolute value, and 
can be generated by excess or deficit of energy: 
 hshsh xpdev −=  (7) 

The penalty for deviation corresponds to the product 
of the cost for the shifted power in absolute value: 
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The revenue is given by the product of the expected 
electricity market price by the power output of the wind 
farm: 
 shshsh pL  λ=  (9) 

The expected profit is calculated as the difference be-
tween the revenue of the wind farm, the penalty for 
deviation and the operational costs. 

Substituting (8) into (6) gives: 
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2.3 Constraints 
For a total deviation −+ −= shshsh dddev   the optimal 

solution is guaranteed to be achieved with one of the 
variables  +

shd  or −
shd   equal to zero, due to the fact that 

1≤+
shr  and 1≥−

shr : 

 0=+−− −+
shshhsh ddxp  (11) 

In order to make the offers to the market, it is re-
quired to satisfy the technical restrictions of the wind 
farm. So, the optimal value of the objective function is 
determined subject to inequality constraints or simple 
bounds on the variables. 

The constraints are indicated as follows: 

 shsh Wd ≤≤ +0  (12) 

 max0 Pdsh ≤≤ −  (13) 

where shW  is the forecasted wind power production in 

scenario s in period h, and maxP  is the maximum power 
installed in the wind farm. Constraints (12) and (13) 
impose caps on the positive and negative deviations, 
respectively.  

In (14), the offers are also limited by the maximum 
power installed in the wind farm: 

 max0 Pxh ≤≤  (14) 

Constraint (15) imposes that offers should be lower 
than or equal to the total power output of the wind tur-
bines: 

 ∑
=

≤
I

i
ihh gx

1

 (15) 

In (16), sη  is a variable whose value is equal to zero 
if the scenario s   has a profit greater than ζ  .  For the 
rest of scenarios, sη  is equal to the difference of ζ   and 
the corresponding profit: 

 1 - α 

 ζ = VaR 

    CVaR 
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2.4 Linearization of the Objective Function 
The objective function, given in the previous subsec-

tion, is characterized by nonlinearities due to the exis-
tence of an absolute value. So, it is required to use a 
mathematical process that allows reformulating into a 
linear problem.  

In this subsection, the problem involving absolute 
value terms is transformed into a standard linear pro-
gramming formulation. Initially, it is considered that: 

   Max T xxc F −=  (18) 

subject to: 

 maxmin xxx ≤≤  (19) 

 nR  ∈x  (20) 
In (18), the function ).( F  is an objective function of 

decision variables, where c  is the vector of coefficients 
for the linear term.  

In (19), minx  and maxx are the lower and upper bound 
vectors on variables. The variable  x  is a set of deci-
sions variables. 

Subsequently, absolute-valued variables are replaced 
with two strictly positive variables: 

 −+ += xxx   (21) 

In addition, each variable is substituted by the differ-
ence of the same two positive variables, as: 

 −+ −= xxx  (22) 

The equivalent linear programming problem is given 
by: 

 )(Max  T −+ +−= xxxcF  (23) 

subject to: 

 maxmin xxx ≤≤  (24) 

 −+ −= xxx  (25) 

 0,0 ≥≥ −+ xx  (26) 

3 PROPOSED APPROACH 

3.1 Uncertainty Characterization 
Uncertainties of wind power production and elec-

tricity market prices are handled by treating them as 
stochastic variables.  

To generate wind-price scenarios, time-series mod-
els, such as ARIMA [4], or artificial intelligence mod-
els, such as neural networks [10], data mining and evo-
lutionary computation [11], can be used.  

A hybrid intelligent approach, combining wavelet 
transform (WT), particle swarm optimization (PSO) and 
adaptive-network-based fuzzy inference system 
(ANFIS), is used in this paper to generate a large 
enough number of equiprobable scenarios, that ade-
quately represent the probability distribution of wind 
power production and electricity market prices over the 
day. The WT convert the wind power series into a set of 
constitutive series, forecasted using ANFIS. The PSO is 
used to improve the performance of ANFIS, tuning the 
membership functions required to achieve a lower error. 
The step-by-step algorithm used to implement the hybr-
id intelligent approach can be seen in [12]. 

3.2 Scenario Tree 
A scenario tree that is used to represent the first- and 

second-stage decisions is shown in Figure 2. 
For the sake of problem tractability it may be conve-

nient to reduce the size of the scenario tree. A scenario-
reduction technique provides an efficient way to select a 
representative subset of scenarios covering most scena-
rio realizations, plausible and extreme. A fast-forward 
reduction algorithm is described in [13]. 

3.3 Two-Stage Stochastic Programming Approach 
The two-stage stochastic programming approach can 

be formulated as: 

 ] [max   Max TT
ωωω

yqExc y+  (27) 

subject to: 

 maxmin bAxb ≤≤  (28) 

 maxmin    ωωωωω hyWxTh ≤+≤  (29) 

 0 ,0 ≥≥ ωyx  (30) 

where c  is a vector of the objective function coeffi-
cients for the x  variables in the first-stage,  minb

 
and 

maxb  are the lower and upper bound vectors for the 
first-stage constraints, and A  is the matrix of coeffi-
cients for the first-stage constraints. For each ω , min

ωh  
and max

ωh  are the lower and upper bound vectors for the 
second-stage constraints, ωq  is vector of coefficients 
for the linear term for the second-stage variables, ωT  is 
the technology matrix, and ωW  is the recourse matrix 
under scenario ω . 

In the first-stage, the decision should be taken before 
the uncertainties represented by x  are known. In the 
second-stage, where the information x  is already avail-
able, the decision is made about the vector y . The first-
stage decision of x  depends only on the information 
available until that time; this principle is called nonanti-
cipativity constraint.  

The problem of two stages means that the decision x  
is independent of the achievements of the second-stage, 
and thus the vector x  is the same for all possible events 
that may occur in the second-stage of the problem. 
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Figure 2:  Scenario tree. 

The problem of two stages means that the decision x  
is independent of the achievements of the second-stage, 
and thus the vector x  is the same for all possible events 
that may occur in the second-stage of the problem. 

3.4 Deterministic Equivalent Problem 
The stochastic model is usually a difficult computa-

tional problem, so it is common to choose the determi-
nistic model solution using the average of random va-
riables or solving a deterministic problem for each sce-
nario. The problem shown in the previous subsection is 
equivalent to the so-called deterministic equivalent one 
that in the splitting variable representation is as follows: 

 ∑
=

+
S

1s
s

T
ss

T
yx, ρ   Max

s
yqxc  (31) 

subject to: 

 maxmin bAxb ≤≤  (32) 

 maxmin    sssss hyWxTh ≤+≤   for   Ss ,1,K=  (33) 

 0 ,0 ≥≥ syx   for   Ss ,1,K=  (34) 

4 CASE STUDY 
The proposed stochastic programming approach has 

been applied on a realistic case study, based on a wind 
farm in Portugal located in the Viana do Castelo region 
(Alto Minho - Corisco). The total installed wind power 
capacity is 66 MW, corresponding to 33 2.0-MW wind 
turbines. Our model has been developed and imple-
mented in MATLAB and solved using the optimization 
solver package CPLEX. The numerical testing has been 
performed on a 2-GHz-based processor with 2 GB RAM. 

4.1 Input Data 
The proposed approach takes into account the uncer-

tainty in both wind power production and electricity 
market prices by using scenarios in a stochastic optimi-
zation problem. The profits of a wind power producer 
are evaluated according to a given risk level. Imbalance 
penalties are imposed to prevent gaming and to secure 
better system operation [14]. 

The time horizon chosen is one day divided into 24 
hourly periods. This case study is composed of ten wind 
power production scenarios, Figure 3, and ten electricity 
market prices scenarios, Figure 4. The number of scena-
rios, although arbitrarily selected, adequately describes 
the stochastic processes. Moreover, ten imbalance price 
ratio scenarios are taken into account. Thus, the total 
number of scenarios generated in the optimization prob-
lem is 1000=S . The probability of each generated 
scenario will be S/1 . 

4.2 Results Analysis 
A thorough comparison of the optimal offering strat-

egies in the market for different risk levels using the 
proposed approach is presented thereafter. 

The solution of the optimization model contains the 
optimal bids for the daily market. The optimal bids, 
shown in Figure 5, are common to the 1000 scenarios.  

The two-stage stochastic programming approach 
contains )1)13(( ++++×⋅ SISH  continuous variables 
and ))1(( SSH ++⋅  constraints. Hence, the problem 
size depends on the number of scenarios considered. 

Figure 5 shows the ability of the wind power produc-
er to trade in the day-ahead market taking into account 
the desired risk level. 
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Figure 3:  Wind power production scenarios. 
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Figure 4:  Electricity market price scenarios. 
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Figure 5:  Optimal hourly bids for different risk levels. 

Choosing one scenario of the problem, it can be veri-
fied in Figure 6 that the wind farm adjusts its produc-
tion to minimize deviations. Nevertheless, in almost 
every hour there are small differences between the of-
fers and the power output of the wind farm. 

The deviations resulting from the difference between 
the offers and the wind power production are shown in 
Figure 7. A positive deviation means that the wind 
power production was higher than the offer submitted to 
the day-ahead market, and vice-versa. 

The expected profit versus profit standard deviation 
is presented in Figure 8, considering seven values for β  
and 95.0=α  in all instances.  

Figure 8 provides the maximum achievable expected 
profit for each risk level or, alternatively, the minimum 
achievable risk level for each expected profit. This 
figure, known as efficient frontier or Markowitz fron-
tier, reveals that for a risk-neutral producer ( )0=β  the 
expected profit is 18719 € with a standard deviation of 
1268 €. Instead, a risk-averse producer ( )1=β  expects to 
achieve a profit of 18478 € with a lower standard devia-
tion of 965 €. Table 1 establishes a numerical compari-
son of the increase in profit for several risk levels. 
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Figure 6:  Optimal offers to be submitted to the day-ahead 
market, and wind power production, for a risk level corres-
ponding to 1=β . 
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Figure 7:  Deviations resulting from the difference between 
the offers and the wind power production for a risk level 
corresponding to 1=β . 
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Figure 8:  Expected profit versus profit standard deviation. 

Risk 
Level

Profit Std. 
Deviation (€) 

Expected 
Profit (€) 

% 
Increase

CPU 
Time (s)

1.0 965 18478 - 1.62 

0.8 971 18486 0.04 1.05 

0.5 978 18519 0.22 0.98 

0.3 1001 18599 0.65 0.92 

0.2 1050 18675 1.07 0.88 

0.1 1108 18702 1.21 0.82 

0.0 1268 18719 1.30 0.76 
 

Table 1:  Comparison of the increase in profit for several risk 
levels. 

The maximum profit represents an increase of 1.30% 
corresponding to risk level 0=β . Nevertheless, the 
profit standard deviation is higher for 0=β .  
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Figures 9 and 10 present the histograms of the profits 
for 0=β and 5.0=β , respectively. 
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Figure 9:  Histogram of the profits for the risk level corres-
ponding to 0=β . 
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Figure 10:  Histogram of the profits for the risk level corres-
ponding to 5.0=β . 

Analyzing Figures 9 and 10, it can be verified that 
the risk level corresponding to 0=β  implies a higher 
expected profit than for 5.0=β . Nevertheless, 0=β  is 
riskier than 5.0=β  because financial loss can occur 
under some scenarios, thus a risk-averse producer may 
prefer 5.0=β . Hence, our approach allows selecting 
the best solution according to the desired risk exposure 
level. 

5 CONCLUSION 
A two-stage stochastic programming approach is 

proposed in this paper to develop risk-constrained offer-
ing strategies for a wind power producer. Uncertainty is 
related to wind power production and electricity market 
prices. A hybrid intelligent approach generates wind-
price scenarios, and risk management is also incorpo-
rated by limiting the volatility of the expected profit 

through the CVaR methodology. A thorough compari-
son of the optimal offering strategies in the market for 
different risk levels is presented in this paper. Hence, 
the presented results on a realistic case study validate 
the proficiency of the proposed approach, enabling the 
selection of the best solution according to the desired 
risk exposure level, while the average computation time 
is acceptable. 
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