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Abstract – Under the current European energy policy 

towards a sustainable environment, the optimization of the 
hydropower resources is of crucial importance. In this 
paper, a mixed-integer nonlinear programming approach 
is proposed for the short-term hydro scheduling problem, 
considering head-dependency and discontinuous operating 
regions. As new contributions to earlier studies, market 
uncertainty is introduced via price scenarios and risk 
management is incorporated by limiting the volatility of 
the expected profit through the conditional value-at-risk. 
Besides, plant scheduling and pool offering by the hydro 
power producer are simultaneously considered to solve a 
realistic hydro system with three cascaded reservoirs. 
Finally, conclusions are duly drawn. 

Keywords: Generation, Hydro energy, Pricing, Un-
certainty, Risk 

1 INTRODUCTION 
The renewable technology with the greatest share in 

electricity generation today in Portugal is of hydro ori-
gin. The total installed capacity at end of year 2009 
reached 16738 MW, of which 4578 MW (27%) corres-
ponded to hydro plants. Portugal has ambitious goals in 
terms of renewable energies: 45% of total electricity 
production by 2010, surpassing 60% by 2020. Hydro-
power is cost-competitive and can be used as a storage 
system diminishing the effect of the stochastic wind 
power. Hence, hydropower is one of the key priorities 
for the future, aiming to bring Portugal closer to refer-
ence countries such as Austria and Sweden. Planned 
investments will enable Portugal to reach 8600 MW of 
installed capacity by 2020, significantly increasing the 
hydropower potential. 

In the Portuguese system there are several cascaded 
hydro systems formed by small reservoirs. This is the 
situation of the Douro River in the North of Portugal, 
for instance, which represents about two-thirds of the 
total hydro generation in the country. In hydro plants 
with a small storage capacity the operating efficiency is 
sensitive to the head ⎯ head change effect [1]. Hence, it 
is necessary to consider head-dependency on short-term 
hydro scheduling (STHS). 

In a competitive environment, such as the Norwegian 
case [2], a power producer has a goal to produce elec-
tricity and sell it with maximum profit [3]. The optimal 
management of the hydropower resources available 
delivers a self-schedule and represents a major advan-
tage for a hydro power producer to face competition. 

STHS models provide decision support for the opera-
tional task of bidding in the electricity market [4]. The 
development of optimal offering strategies is crucial for 
the hydro power producer to maximize its profit. 

Mixed-integer linear programming (MILP) is becom-
ing frequently used for STHS [5]-[8], where integer 
variables allow modelling of discrete hydro unit-
commitment constraints. A nonlinear model has advan-
tages compared with a linear one. The use of nonlinear 
programming (NLP) in some case studies [9] has lead to 
an increase in profit of about four percent compared to 
using linear programming (LP), requiring a negligible 
extra computation time. 

Since the nonlinear model cannot avoid water dis-
charges at forbidden areas, mixed-integer nonlinear 
programming (MINLP) approaches have been recently 
proposed in [1,10] to solve the STHS problem. Howev-
er, the STHS problem was treated as a deterministic 
one, ignoring uncertainties, which may not be a realistic 
assumption nowadays. 

Day-ahead energy market prices are quite volatile, 
hard to predict, and subject to data uncertainty caused 
by non-anticipated market conditions. Price volatility 
throughout the day can affect notably the profits of the 
hydro power producer [6]. Moreover, most power pro-
ducers are, in fact, risk-averse [11]. Hence, to manage 
risk along with generation scheduling, and to achieve a 
more uniform profit distribution among scenarios, a risk 
measure should be taken into account. The optimal self-
schedule is then used to derive appropriate offering 
strategies to the pool. 

As new contributions to earlier MINLP models 
[1,10], market uncertainty is introduced via price scena-
rios and risk management is incorporated by limiting 
the volatility of the expected profit through the condi-
tional value-at-risk (CVaR). Besides, plant scheduling 
and pool offering by the hydro power producer are 
simultaneously considered to solve a realistic hydro 
system with three cascaded reservoirs. Finally, conclu-
sions are duly drawn. 

2 PROBLEM FORMULATION 

2.1 Risk Management 
CVaR represents an appropriate approach to address 

risk management for a hydro power producer. Previous 
MINLP approaches [1,10], however, did not consider 
risk management. 
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VaR has the additional difficulty, for stochastic prob-
lems, of requiring the use of binary variables for its 
modelling.  

Instead, CVaR computation does not require the use 
of binary variables and it can be modelled by the simple 
use of linear constraints. The concept of CVaR is illu-
strated in Figure 1.  

CVaR is the expected profit not exceeding a measure 
ζ  called Value-at-Risk (VaR): 

 )|(CVaR ζ≤= BBE  (1) 

VaR is a measure computed as the maximum profit 
value such that the probability of the profit being lower 
than or equal to this value is lower than or equal to 

δ−1 , where δ  is the per unit confidence level, i.e.: 
 ( ){ }δ−≤≤= 1p|maxVaR xBx  (2) 

The value of δ  is commonly set between 0.90 and 
0.99 [12]. In this paper, δ  is considered equal to 0.95. 
Mathematically, CVaR can be defined as: 

 ∑
=−

−
N

n
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ζ  (3) 

subject to: 
 0≤−+− nnB ηζ  (4) 

 0≥nη  (5) 

where nρ  is the occurrence probability of scenario n , 
nη  is the auxiliary variable used to compute CVaR, and 
nB  is the benefit in scenario n . Constraints (4) and (5) 

enforce conditions pertaining to the risk term. In (4), nη  
is equal to zero if scenario n  has a profit greater than 
ζ .  For the remaining scenarios, nη  is equal to the 
difference of ζ  and the corresponding profit. 

2.2 Objective Function 
In the STHS problem under consideration, the objec-

tive function takes into account all the price scenarios at 
once, weighted by their occurrence probability.  
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Figure 1:  VaR and CVaR illustration. 

 The STHS problem can be formulated as to maxim-
ize: 
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The objective function (6) is defined as the expected 
total profit of the hydro power producer plus a risk 
measure of the profit. The CVaR approach is included 
into the formulation providing a trade-off between max-
imum expected profit and profit volatility. In (6), nρ  is 
the probability associated to scenario n, α  is the 
weighting positive factor to achieve an appropriate 
trade-off between profit and risk, which depends on the 
preferences of the producer, and ζ  is the Value-at-Risk 
at a confidence level of δ . A risk-averse producer tends 
to minimize the risk selecting a large value of α  to 
increase the weight of the risk measure in (6). Other-
wise, a risk-neutral producer tends to maximize the risk 
selecting a small value of α  to obtain a higher profit. 

nB  is the benefit for each price scenario, given by: 

 ∑
=

=
I

i
ikknn pB

1

λ  (7) 

where knλ  is the energy price for scenario n at the pe-
riod k, and ikp  is the power generation of plant i during 
the period k. 

2.3 Hydro Constraints 
The optimal value of the objective function is deter-

mined subject to constraints of two kinds: equality con-
straints and inequality constraints, or simple bounds on 
the variables. The constraints are indicated as follows: 

- Water conservation equation for each reservoir 
 kikikikikikiki sqsqavv ,1,11, −−− ++−−+=  (8) 

- Power generation equation 
 ),( kikikiki qPp η=  (9) 

- Head equation 
 ),( ,1 kikikiki llHh +=  (10) 

- Water storage constraints 

 maxmin
ikii vvv ≤≤  (11) 

- Water discharge constraints 

 maxmin
ikikiiki quqqu ≤≤  (12) 

- Water spillage constraints 
 0≥kis  (13) 

 Equation (8) corresponds to the water conservation 
equation for each reservoir, assuming that the time 
required for water to travel from a reservoir to a reser-
voir directly downstream is less than the one hour pe-
riod, independently of water discharge, due to the small 
distance between consecutive reservoirs.  

 1 - δ 

 ζ = VaR 

    CVaR 
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In (8) kiv  is the water storage of reservoir i at end of 
period k, kia  is the inflow to reservoir i during the 
period k, kiq  is the water discharge of plant i during the 
period k, and kis  is the water spillage by reservoir i 
during the period k.  

In (9) power generation, kip , is considered a func-
tion of water discharge and efficiency, kiη , depending 
on the head, kih . Hence, the electrical output of a hy-
dro plant depends on the water discharge, the head, and 
the efficiency. The operating points are restricted by 
minimal and maximal water discharges [13]. 

In (10) the head is considered a function of the water 
levels in the upstream reservoir, kil , and of the down-
stream reservoir, kil ,1+ , depending on the water storages 
in the respectively reservoirs.  

In (11) water storage has lower and upper bounds. 
Here for each reservoir i, max

iv  is the maximum storage, 
and min

iv  is the minimum storage. 
In (12) water discharge has lower and upper bounds. 

Here for each reservoir i, max
iq  is the maximum dis-

charge, and min
iq  is the minimum discharge. The binary 

variable, kiu , is equal to 1 if plant i is on-line in hour k, 
otherwise is equal to 0. In (13) a null lower bound is 
considered for water spillage. Normally, water spillage 
by the reservoirs occurs when without it the water sto-
rage exceeds its upper bound, so spilling is necessary to 
avoid damage. The initial water storages, 0iv , and the 
inflows to reservoirs are assumed known. 

3 PROPOSED APPROACH 
The MINLP can be stated as to maximize: 

 )(xJ  (14) 

subject to: 

 maxmin xxx ≤≤  (15) 

 maxmin bxAb ≤≤  (16) 
 integerjx  (17) 

where )(⋅J  is a nonlinear function of the vector x  of 
decision variables, minx  and maxx  are the lower and 
upper bound vectors on variables, A  is the constraint 
matrix, minb  and maxb  are the lower and upper bound 
vectors on constraints. Equality constraints are defined 
by setting the lower bound equal to the upper bound, 
i.e. maxmin bb = . The variables jx  are restricted to be 
integers. Note that (6) is rewritten into (14). The water 
conservation equation (8) is rewritten into (16), as well 
as the lower and upper bounds for water discharge giv-
en in (12). Eq. (15) corresponds to the inequality con-
straints in (11) and (13). 

Our nonlinear objective function is achieved by 
means of two linearizations: the first of them, efficiency 
as a function of head, is acceptable; the second one, 
water level as a function of water storage, implies reser-

voirs with vertical walls, which however is a good ap-
proximation for reservoirs with a small storage capacity, 
as our data have shown for our case study. 

Power generation is considered a nonlinear function 
of water discharge and water storage, given by: 
 )( 00,1,110 iiikiiiiikiiikiki lvlvqp ηαβααβα +−−+= +++ (18) 

A major advantage of our MINLP approach is to 
consider the head change effect in a single function (18) 
of water discharge and water storage, which can be used 
in a straightforward way, instead of deriving several 
curves for different heads. A MILP approach can be 
used to find a starting point for the MINLP. Still, initial 
values do not affect the optimization results. 

The model presented in this paper is especially indi-
cated for systems in which the daily policy of water 
releases has significant influence on the hourly heads 
[6], i.e., when it is really important to consider the head 
variation to get optimal or near-optimal realistic sche-
dules, as occurs for instance in Portugal and Spain. 

In our model, market uncertainty is introduced in the 
MINLP model via price scenarios and risk management 
is incorporated through CVaR. Therefore, the trade-off 
of maximum profit versus minimum risk is now proper-
ly addressed.  

The hydro generation scheduling is used to develop 
appropriate offering strategies to the pool. 

4 CASE STUDY 
The MINLP approach, which considers not only 

head-dependency and discontinuous operating regions, 
but also price uncertainty and risk management, has 
been applied on a case study based on one of the Portu-
guese cascaded hydro systems.  

This approach has been developed and implemented 
in MATLAB and solved using the optimization solver 
package Xpress-MP. The numerical simulation has been 
performed on a 600-MHz-based processor with 256 MB 
of RAM. 

In [1,10], energy prices were considered as determi-
nistic input data. Instead, several prices scenarios are 
considered in this paper using the neural network ap-
proach proposed in [14]. The hydro power producer is 
considered a price-taker and therefore the price variable 
is an exogenous parameter for the proposed approach. 

The price scenarios over the 24-hours time horizon 
are shown in Figure 2 (where $ is a symbolic economic 
quantity). The number of price scenarios generated in 
the optimization problem is 20=N . This number has 
been selected arbitrarily, and the probability of each 
generated scenario will be N1/ . 

Final water storage in reservoirs is constrained so the 
water storage in the reservoirs at the last period is fixed. 
The final water storage in reservoirs is considered equal 
to the value at the beginning of the time horizon.  

The storage targets for the short-term time horizon 
established by medium-term planning studies may be 
represented either by a penalty on water storage or by a 
previously determined ‘future cost function’ [15,16]. 
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Figure 2:  Energy price profile considered. 

The realistic hydro system with three cascaded reser-
voirs is shown in Figure 3.  

Only the first reservoir has inflow. This inflow is due 
to an upstream watershed belonging to a different com-
pany. The inflow on the first reservoir is shown in Fig-
ure 4. Pumping is not available. 

The expected profit versus profit standard deviation 
is presented in Figure 5, considering seven values for 
α . This figure provides the maximum achievable ex-
pected profit for each risk level or, alternatively, the 
minimum achievable risk level for each expected profit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Hydro system with three cascaded reservoirs.  
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Figure 4:  Natural inflow on the first reservoir. 
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Figure 5:  Expected profit versus profit standard deviation. 

An analysis of Figure 5, known as efficient frontier 
or Markowitz frontier, reveals that for a risk-neutral 
producer ( 0=α ), the expected profit is $388178 with a 
standard deviation of $35357. On the other hand, a risk-
averse producer ( 1=α ) expects to achieve a profit of 
$387602 with a lower standard deviation of $35080. 
The expected profit results for a risk-averse producer 
are obtained by considering 1=α  in (6), while the ex-
pected profit results for a risk-neutral producer are ob-
tained by considering 0=α  in (6). 

Table 1 establishes a numerical comparison of the in-
crease in profit for several risk levels.  

The maximum profit represents an increase of 0.15% 
corresponding to risk level 0=α . Hence, different 
hydro power producers may choose different beha-
viours towards risk. Based on the results obtained, risk 
levels implying 2.0=α  or lower are not recommended. 
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The optimal reservoir storage trajectories are shown 
in Figure 6. The optimal plant discharge trajectories are 
shown in Figure 7.  

The solid line denotes the results obtained using a 
risk level 0=α , while the dashed line denotes the re-
sults obtained using a risk level 1=α . 

Risk makes possible a different behaviour, especially 
for the first reservoir, implying that for a risk-neutral 
producer the influence of the head change effect is more 
relevant.  

The results in Figure 7 are consistent with those in 
Figure 6. The risk-neutral producer aims at discharging 
mostly during peak-hours, thus obtaining maximum 
profit. Instead, by assuming higher values for the risk 
penalty factors, the number of online hours tends to 
decrease. 

Figures 8 and 9 presents the histograms of the profits 
for 0=α  and 1=α , respectively.  
 

Risk 
Level 

Profit Std. 
Deviation (€) 

Expected 
Profit (€) 

% 
Increase 

CPU 
Time (s)

1.0 35080 387602 - 2.31 

0.8 35116 387752 0.04 2.11 

0.5 35191 387969 0.09 2.05 

0.3 35211 388019 0.11 1.81 

0.2 35244 388080 0.12 1.62 

0.1 35312 388162 0.14 1.55 

0.0 35357 388178 0.15 1.48 
 

Table 1:  Comparison of the increase in profit for several risk 
levels. 
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Figure 6:  Optimal reservoir storage trajectories. The solid 
line denotes the results obtained considering 0=α , while the 
dashed line denotes the results obtained considering 1=α . 
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Figure 7:  Optimal plant discharge trajectories. The solid line 
denotes the results obtained considering 0=α , while the 
dashed line denotes the results obtained considering 1=α . 
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Figure 8:  Histogram of the profits corresponding to 0=α . 
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Figure 9:  Histogram of the profits corresponding to 1=α . 
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Analyzing Figures 8 and 9, it can be verified that the 
risk level corresponding to 0=α  implies a higher ex-
pected profit than for 1=α . However, 0=α  is riskier 
than 1=α , because financial loss can occur under some 
scenarios. Thus, a risk-averse investor would prefer 

1=α  because it gives almost the same expected profit 
level and exhibits lower financial risk. Hence, our mod-
el allows the decision maker to obtain solutions accord-
ing to the desired risk exposure level. 

Figure 10 presents the hourly bids (quantity–price 
pairs) for the hydro system considered in this case 
study. 

The hourly supply functions have to be monotonical-
ly increasing functions. The method proposed in this 
paper for building these supply functions relies on solv-
ing independent problems with different final level 
conditions at each reservoir. In this case study, 11 dif-
ferent final level conditions have been considered, with 
values ranging from 7 to 77 $/MWh. Hence, the curves 
are represented by piecewise linear approximations 
formed by 11 segments. 
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Figure 10:  Hourly supply functions generated, for the risk 
levels corresponding to 0=α  (□) and 1=α  (∆).  

5 CONCLUSION 
A mixed-integer nonlinear programming approach is 

proposed for the short-term hydro scheduling problem, 
considering not only head-dependency and disconti-
nuous operating regions, but also price uncertainty and 
risk management. The presented results on a realistic 
case study validate the proficiency of the proposed 
approach, enabling the selection of the best solution 
according to the desired risk exposure level, while the 
average computation time is acceptable. The optimal 
self-schedule is also used to derive appropriate offering 
strategies to the pool. 
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