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Abstract—This paper proposes a novel algorithm to identify
degradation in batteries used for power system applications.
Unlike conventional battery control methods that try to extend
battery lifetime by applying heuristic rules, this approach allows
us to maximize battery lifetime within an optimal control frame-
work. We use an online Least Squares (LS) identification method
to develop a two-dimensional degradation map that describes the
lost battery charge as a function of the battery state of charge
and the applied current. We project the degradation map to an
economic cost function that associates each discrete control action
with its utilization cost. Additionally, we develop a nonlinear
battery model to capture fast battery dynamics including the rate
capacity effect and we identify its parameters with a nonlinear
LS method. We demonstrate the usefulness of the approach by
presenting a model predictive control (MPC) scheme for a peak
shave application in which we use a linearized version of the
battery model along with the degradation cost function. We
use a high-fidelity lithium ion electrochemical battery model
to simulate a real battery system and we show that the MPC
scheme increases the battery lifetime by a factor of 2.6 and the
internal rate of return by 11 percentage points as compared to
conventional control approaches.

Keywords—battery modeling, capacity fade, battery degrada-
tion, online system identification, battery management systems,
battery energy storage system

I. INTRODUCTION

Investment costs for batteries used in power system appli-
cations are still very high [1], such that a battery’s expected
lifetime greatly affects assessments of its economic viability.
Battery investment decisions usually rely on utilization costs
derived from integral terms such as the total number of
achievable cycles by a pre-defined end of life capacity [2].
However, in reality, there is a nonlinear relationship between
operational management and charge capacity loss, and so the
total amount of energy that can be delivered in a battery’s
lifetime is dependent on each individual control action. Thus,
operational management has a strong influence on profitability
and we can best address economic requirements by developing
control policies that take battery lifetime into account.

Instead of using heuristic rules to minimize battery degra-
dation [3], one can use a Model Predictive Control (MPC)
framework to obtain near-optimal results. Since MPC relies on
dynamic models and control objectives, we need quantitative
models of both the slow battery degradation process and the
fast dynamics. A common approach used to quantify degra-
dation involves using available manufacturer data that specify
capacity loss under constant cycling [4]. However, these data

do not allow us to accurately determine an individual battery’s
capacity loss under other types of cycling, such as those
required for power system applications.

The contribution of this paper is the development of
methods to identify both fast battery dynamics and slow
battery degradation processes given arbitrary battery usage
patterns. The models are identified with data from a high-
fidelity electrochemical lithium ion (Li-ion) battery model
[5] used in place of a real battery system. We present a
linearized model of the fast battery dynamics, which allows
us to use a linear optimization framework. Importantly, the
model captures the rate capacity effect [6] allowing us to
accurately model the capabilities of the battery in high/low
state of charge (SOC) regimes. Furthermore, we introduce an
online Identification (ID) method that maps the lost charge
capacity associated with each discrete control action to the
SOC and current, allowing us to create a battery degradation
map. Additionally, we propose an economically-motivated
quadratic control objective derived from the degradation map
and show how it can be incorporated into an MPC frame-
work, which includes the fast battery dynamics. Through an
example, we show how this strategy increases both the battery
lifetime and the Internal Rate of Return (IRR) compared
to conventional control methods, e.g., [7], [8]. The paper
includes the following parts. Section II describes the battery
models, system identification methods, and model validation
results. Section III presents the derivation of a quadratic cost
function that relates battery degradation and utilization costs.
Section IV describes a typical power system application and
compares the results of the MPC approach to those of several
conventional approaches. Section V concludes and provides
an outlook for future research.

II. BATTERY MODELING AND SYSTEM IDENTIFICATION

We propose a two-stage ID process consisting of 1) parame-
ter estimation of models that capture the fast battery dynamics
and 2) identification of the slow battery degradation process,
which we refer to as ‘capacity fade.’ First, we introduce
several different battery models and estimate their parameters
from data obtained from the electrochemical battery model
DUALFOIL [5]. Second, we identify the capacity fade, again
using data from the DUALFOIL model. We assume a station-
ary degradation process.
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A. Fast Dynamics

Ref. [9] presented a nonlinear battery model consisting of
one internal resistor R, the value of which depends mainly on
the ion conductivity of the electrolyte. The accessible electric
charge Qbat is limited by the cut-off voltages of the cell, and
the SOC keeps track of the level of the remaining charge
normalized by Qbat. We refer to this as the nonlinear basic
battery model

˙SOC = −Qbat
−1Ibat , (1)

Vt = focv(SOC)−RIbat , (2)

where Vt is the terminal output voltage and Ibat is the input
current. Unlike [9], we assume the nonlinear open circuit
voltage function focv is known via a lookup table.

This model does not capture the dependency of the battery
capacity on the charge rate, referred to as the ‘rate capacity
effect’ [6]. To capture this behavior, we extend (1)-(2) using
dynamics from the KiBaM model [10], which includes two
charge capacity wells (x1, x2). Charge can be withdrawn
only from the available well x1 and the wells are connected
internally with a valve. The dimensionless parameters cr and
cw define the conductance of the valve and the width of
the available charge well, respectively. The KiBAM model
describes only lead acid batteries, and so we have modified the
system output equation to include focv to represent different
battery technologies such as Li-ion and NaS. Therefore, our
nonlinear extended battery model is

[
ẋ1

ẋ2

]
︸ ︷︷ ︸

ẋ

=

[
− crcw

cr
1−cwcr

cw − cr
1−cw

]
︸ ︷︷ ︸

A

x−
[
Q−1

bat

0

]
Ibat , (3)

Vt = focv

(
x1

cw

)
−RIbat , (4)

where SOC = x1 + x2. Note that we normalize the charge
wells by the charge capacity Qbat, which is an additional
difference between this model and the KiBaM model.

We can linearize the battery models by setting focv(·)
to a constant value V̄oc. If we neglect the power converter
dynamics, we can multiply the output equations (2) and (4)
by the battery current Ibat to obtain an expression for the
battery power

Pbat = VtIbat = V̄ocIbat −RIbat
2 . (5)

We can also obtain a version of (1)-(2) that is linear in power.
We first solve (5) for Ibat. Figure 1 shows the region around
the real root of Ibat. We linearly approximate the charging and
discharging current up to the battery’s rated power Pbat,r, as
shown in the figure. We then insert the linearized currents into

P+
bat,rP−bat,r

Ibat

Pbat

Ibat =
V̄oc±
√

V̄ 2
oc−4RPbat

2R

Idis

Ich

Figure 1. Linearization of the charging Ich and discharging Idis currents,
given rated power Pbat,r.

(1)-(2) and multiply (1) by V̄oc. With following definitions

Cbat = QbatV̄oc , (6)

ηgen
−1 =

V̄oc −
√
V̄ 2

oc − 4RP+
bat,r

2RP+
bat,r

V̄oc , (7)

ηload =
V̄oc −

√
V̄ 2

oc − 4RP−bat,r

−2RP−bat,r

V̄oc , (8)

ubat
load =

{
−Pbat if Pbat < 0

0 if Pbat ≥ 0
, (9)

ubat
gen =

{
Pbat if Pbat > 0

0 if Pbat ≤ 0
, (10)

we obtain the following linear basic battery model

ẋCbat = −ηgen
−1ubat

gen + ηloadu
bat
load , (11)

Vt = V̄oc −
R

V̄oc
(ubat

gen − ubat
load) , (12)

where (11) is a Power Node equation [11] with efficiency
parameters ηgen and ηload, energy capacity Cbat, power ex-
traction/injection variables ugen and uload, and x = SOC. The
linearized model can be extended to include the rate capacity
effect from (3) yielding the linear extended battery model

ẋ = Ax+ Cbat
−1

[
−η−1

gen ηload

0 0

] [
ugen

uload

]
,(13)

Vt = V̄oc −
R

V̄oc
(ugen − uload) . (14)

The battery models are identified and validated on the
DUALFOIL model configured, as shown in Table I, to include
stationary chemical side reactions that cause irreversible bat-
tery capacity loss. The DUALFOIL model is a highly accurate
battery model that captures the electrochemical process with
partial differential algebraic equations solved with a Newton-
Raphson variable step solver. For our economic assessment,
we use an end of life (eoL) criterion that defines the proportion
of battery capacity remaining at the end of the battery’s useful
life. Specifically, to get degradation results comparable to a
standard cycling test, we tune the parameters rsc and rsa such
that after 4000 full cycles the initial charge capacity is reduced
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Table I
DUALFOIL CONFIGURATION

ambient conditions isothermal
cathode LiCoO2

anode Graphite
electrolyte LiPF6

Acell 1 m2 cell area
rsc 1e-11 side reaction rate constant cathode
rsa 1e-11 side reaction rate constant anode

Table II
IDENTIFIED PARAMETERS OF PROPOSED BATTERY MODELS BASED ON

DATA FROM THE DUALFOIL MODEL

R 1.5 mΩ internal resistance
Qbat 31.25 Ah charge capacity
cw 0.93 charge well factor
cr 2.24e-5 recovery factor
ηload 0.98 charge efficiency
ηgen 0.97 discharge efficiency
Cbat 120 Wh energy capacity

by approximately 20% (i.e. eoL = 0.8). We calculate the
‘true’ values of the SOC and capacity fade from the internal
DUALFOIL electrode utilization variables and use them for
model ID and validation. We identify the parameters of the
nonlinear battery models and then use them to compute the
linear battery model parameters with (6)-(8). To identify the
parameters, we use a Nonlinear Least Squares (NLS) approach

θ̂ = arg min
θ

N∑
k=1

(Vt,meas(k)− Vt,model(Ibat(k),θ,x0))2 ,

(15)
where the nonlinear basic battery model parameter vector
θTb = [R Qbat]

T , nonlinear extended battery model pa-
rameter vector θTe = [R Qbat cw cr]

T , and x0 is the
initial state vector. We use a Constant Current - Constant Volt-
age (CC-CV) charging/recharging pattern as an input stimuli
(Fig. 2, lower panel), start with a fully depleted battery so
x0 = 0, and assume perfect state measurements, which means
that we know the SOC of the nonlinear models perfectly. The
identified parameters are listed in Table II. After identifying
the nonlinear battery models, we plot their outputs for the
same input sequence used during ID, shown in Fig. 2, upper
panel. The output of the nonlinear extended battery model
matches that of the DUALFOIL model well since it captures
the rate capacity effect. During the CV phases, the output of
the nonlinear basic battery model cannot closely follow that
of the DUALFOIL model. To compare the performance of all
four models in terms of their state and output prediction errors,
we use the Normalized Root Mean Squared Error (NRMSE)
defined as

NRMSE =
‖ym − y‖2
‖y − ȳ‖2

, (16)

where ym is the state/output prediction, y is the state/output
of the ‘true system’ (DUALFOIL model), and ȳ is the mean
value of y. The results are summarized in Table III. The SOC
predictions from the linearized models match very well with
that of the DUALFOIL model. Therefore, it can be concluded
that the current and open circuit voltage linearization do
not have a significant impact on the state prediction error.
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Figure 2. Model validation of the nonlinear battery models against the
DUALFOIL model.

Table III
SUMMARY OF MODEL NRMSES

Model SOC error [%] Vt error [%]
nonlinear basic 0 38
nonlinear extended 0 18
linear basic 3 98
linear extended 3 59

However, the linearizations result in high output prediction
error for both linear models. We use the linear extended
battery model within our MPC controller. We also use this
model together with a Luenberger observer to estimate the
model states (x1, x2) using SOC measurements from the
DUALFOIL model. The model state estimates are needed
within the controller.

B. Slow Dynamics

Battery degradation depends on battery operation and can
thus be influenced by the operational management. Degra-
dation processes are very hard to model, and even in the
electrochemical domain there does not exist a complete theory
[12]. Among the contributors to capacity fade are two chemical
side reactions that transform cyclable ions into solids during
battery operation. Solid deposition occurs on both the cathode
and anode at charging and discharging. While on the cathode
side the electrolyte dissociates into solid particles, a thin film
is deposited on the anode, leading to an increase in the internal
resistance [12].

Side reactions are activated by 1) potential differences
between the interfaces of electrolyte and electrodes, 2) temper-
ature, and 3) the applied battery current [12]. The reaction rate,
defined as the number of ions converted into solid materials
per time, is related to the side current

Is = −Q̇bat = f(Voc, Ibat, ϑ) , (17)

where ϑ is the temperature. Since this process takes place
internally, this current cannot be measured directly. Also,
measurement of the internal resistance is not sufficient for
determining the complete degradation process because it is
affected by only the anode layer decomposition. The lost
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Figure 3. Illustration of the side current (a) given a constant applied battery
current Ibat (b), which results in a linearly increasing SOC (c). In (a), the
blue area shows the actual lost charge Qs, while the green line shows the
approximated value within SOC band n = 3.

charge can only be measured over long observation periods
[13]. Hence, it cannot be directly associated with individual
control actions. However, if there are many charge capacity
measurements, it is possible to estimate the charge lost from
discrete types of control actions. We characterize a control
action by the applied battery current and the battery’s SOC,
and so we discretize these two values into n SOC ‘bands’
and m current ‘intervals.’ We then assume that the side
current is a function of these values (note that we assume
isothermal battery operation so we neglect the direct effect of
temperature).

Figure 3 shows an example. The lost charge Qs between
time t1 and time t2 is

Qs = Qbat(t1)−Qbat(t2) =

t2∫
t1

Is(SOC(t), Ibat(t))dt , (18)

which is shown in blue in Fig. 3(a). In this example, we
discretize the SOC range into n = 3 SOC bands (Fig. 3(c))
so that we can divide Qs into discretized side current values,
each associated with an SOC band and current interval. Then,
Qs can be approximated as the sum of the discretized side
current values

Qs ≈
n∑

l=1

Îs
(
SOC(l), Ībat

)
Tb , (19)

where Ībat is the current associated with the relevant current
interval and Tb is the time it takes the SOC to traverse the SOC
band given Ībat. The relevant current interval is determined by
calculating the mean current applied to the battery when it was

within the SOC band associated with center
(

2l−1
2n

)
. Note that

both Tb and Ībat are constant in this example, but are not in
the general case.

For multiple capacity loss measurements (Qs,1, ..., Qs,i) and
arbitrary stimuli patterns, the unknown discretized side current
values can be arranged into a system of linear equations

m∑
j=1

n∑
l=1

p1,(n(j−1)+l) Tb,j Îs
(

2l−1
2n , Ībat,j

)
...

m∑
j=1

n∑
l=1

pi,(n(j−1)+l) Tb,j Îs
(

2l−1
2n , Ībat,j

)


︸ ︷︷ ︸

MÎs

=

 Qs,1

...
Qs,i


︸ ︷︷ ︸

Qs

,

(20)
where the p counts the control actions associated with each
SOC band and current interval. We estimate Is with Least
Squares (LS)

Îs = arg min
Îs

‖MÎs −Qs‖22 ,

s.t. Îs > 0 .
(21)

We apply the degradation ID method to the DUALFOIL
model forced with a random current pattern. We discretize
the SOC range into 10 SOC bands and the applied battery
current into 3 current intervals. This means that at least
30 measurements of Qbat are needed to obtain a unique
solution for the side currents. We identify the system after 180
approximately full cycles, which constitutes approximately
5% of the battery lifetime. Hence, we measure Qbat every 6
approximately full cycles. Figure 4 shows the SOC variation
and battery degradation during the ID process. We also plot
the degradation model output prediction (green line) for the
same current pattern. The low Root Mean Squared Error
(RMSE) tells us that using 30 discrete types of control
actions is sufficient for reproducing the lost charge values
from the DUALFOIL model. Figure 5 shows how Is varies
as a function of the SOC and applied battery current. We
plot values obtained from the DUALFOIL model along with a
‘degradation map’ derived through ID. Capacity fade increases
exponentially at high SOCs and high currents. This is in line
with theory since the anode side reaction takes place at high
potentials corresponding to high SOCs. Degradation is also
high at low SOCs because of the cathode side reaction. The
models match well; however, we observe some differences at
low SOCs because our discretization results in smoothing.

III. ECONOMIC BATTERY COST FUNCTION

To operate a battery in an economically-efficient way, we
need to quantify the economic utilization costs, which include
the operating costs (for example, resulting from losses and
degradation) and the investment costs per total delivered
energy cinv subject to the eoL criterion.

To calculate the costs associated with degradation, we can
apply the following transformation

Costs

Cbat
=

Iscinv

(1− eoL)Qbat
, (22)
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model and the model prediction MÎs is 1.3e-3.
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Figure 5. Identified degradation map (red) of estimated side current Is as a
function of the SOC and discharge/charge (pos/neg) applied battery current
Ibat compared to degradation values obtained from the DUALFOIL model
(blue).

resulting in a cost map, as shown in Fig. 6 (blue) for cinv

= 400e/(kWh). We aim to calculate the maximum possible
profit and so we set eoL = 0. Since battery control inputs are
usually given in the power domain, not the current domain, we
also transform the current axis into a power axis (normalized
by the battery capacity), as shown in the figure. The cost map
can be approximated with a positive semi-definite quadratic
cost function

Jbat = b(SOC − a)2 + cubat
gen + dubat

load + eubat
load

2 , (23)

which is compliant with a quadratic MPC framework. The
parameters a, b, c, d, e listed in Table IV were determined by
a LS fit minimizing the distance between the cost map and
the cost function shown in Fig. 6.
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Figure 6. Degradation cost map and approximate quadratic cost function.

Table IV
IDENTIFIED DEGRADATION COST PARAMETERS

a 0.37 SOC target
b 0.42 eCbat h−1(kWh)−1 cost parameter SOC
c 0 e(kWh)−1 cost parameter ugen
d 6.5e-3 e(kWh)−1 cost parameter uload
e 6e-3 ekWh (kW)−2 h−1 Cbat

−1 cost parameter u2load

IV. CASE STUDY: PEAK SHAVE APPLICATION

We now show how the degradation cost function and battery
model can be used within an MPC framework to achieve
peak shaving, and then we compare the results to those of
a heuristic control approach. In each case, we assume an
industrial customer is charged for power and energy utilization,
and uses a battery to both reduce its power peak demand
unet

gen,max and exploit price differences in energy prices.

A. MPC Design

We use the Power Nodes Framework [11] to formulate the
MPC problem as a Quadratic Programming (QP) problem. We
try to find the optimal trajectory U that minimizes following
optimization problem

min
U∈uN

Ts

N∑
k=1

Jbat(k) + cnet(k)unet
gen(k) , (24)

s.t. (13) ,

SOCL ≤ x1(k) + x2(k) ≤ SOCH , (25)
x1(k) ≤ cw , (26)
x2(k) ≤ 1− cw , (27)

ubat
gen(k) + unet

gen(k)− ubat
load(k)− PG2

load(k) = 0 , (28)

unet
gen(k) ≤ unet

gen,max , (29)

ubat
load(k) ≤ Pbat,r , (30)

ubat
gen(k) ≤ Pbat,r , (31)
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where k is the time step, u = [ubat
load, u

bat
gen]T , PG2

load is the fixed
consumption profile of the industrial customer, and unet

gen is the
net grid injection, defined as in (28). Equation (24) is the MPC
objective, which includes the battery cost function and net grid
injection costs. Equation (13) is the linear extended battery
model in discrete time. Equation (25) bounds the SOC and
(26)-(27) prevent an overflow of the wells (x1, x2). Equation
(29) ensures that unet

gen does not exceed a threshold unet
gen,max,

which we assume is chosen a priori, and (30)-(31) specify the
power bounds of the battery.

We apply our control actions to the DUALFOIL model
used in place of a real battery system. To correct for model
mismatch, we use receding horizon control, resolving the
optimization problem with new state information from a
Luenberger observer that uses the true SOC value from the
DUALFOIL model every Rt hours using a time horizon of Ht
hours.

B. Heuristic Control Design

Algorithm 1 lists heuristic control actions for peak shaving,
assuming a two-part electricity tariff with prices Tlo and Thi. If
PG2

load is higher than the peak threshold unet
gen,max (step: 2), then

the battery is discharged. Otherwise, the battery is charged to
a fixed SOC level, either SOCH or SOCL depending upon
the current electricity price (step: 8-9).

Algorithm 1 Heuristic controller for a peak shaving.
1: for (k = 1 : L) do
2: if (PG2

load(k) ≥ unetgen,max) then
3: ubatgen(k) = PG2

load(k) − unetgen,max

4: if (ubatgen(k) > Pbat,r) then
5: ubatgen(k) = Pbat,r

6: end if
7: else
8: if ((SOC(k) < SOCH&&Tlo)
9: or (SOC(k) < SOCL&&Thi)) then

10: ubatload(k) = unetgen,max − PG2
load(k)

11: if (ubatload(k) > Pbat,r) then
12: ubatload(k) = Pbat,r

13: end if
14: end if
15: end if
16: end for

C. Simulation & Results

We use the parameters and assumptions listed in Table V.
We test three controllers: 1) the heuristic controller, 2) the
MPC controller without degradation costs (‘MPC standard’),
and 3) the MPC controller with degradation costs (‘MPC
degrad’). We apply each controller to the same system for
a one month period, acquire the capacity fade from the
DUALFOIL model, and extrapolate the results to determine
the battery lifetime at a specific eoL criterion. Figure 7 shows
sample simulation results from ‘MPC degrad.’ Fig. 8 shows
the SOC resulting from different controllers.

An important quantity that allows us to assess the economic
viability of an investment is the IRR. To calculate the IRR,

Table V
SIMULATION PARAMETERS AND ASSUMPTIONS

ncell 106 number of DUALFOIL cells in series
Acell 7.9 m2 cell area
V̄oc 400 V average open circuit potential
Cbat 100kWh energy capacity
Pbat,r 30kW battery power
umax
gen,net 80kW peak shave threshold
PG2
load 100kWp G2 standard industrial load profile [14] from

Jan 2012 (monthly consumption 18.6MWh)
cnet EWZ NNB industrial net tariff of Zurich utility (EWZ)

power price 9e/kW per month
energy price 60e/MWh (day), 30e/MWh (night)

Ts 15min sample rate
Ht 24h time horizon
Rt 12h receding horizon window

 

 

 

 DUALFOILx̂2x̂1

Time [days]

x
[-

]

Time [days]c n
e
t
[e

/M
W

h
]

ubat
loadPG2

load
ubat
genunet

gen

Time [days]

P
[M

W
]

16 17 18 19 20 21

16 17 18 19 20 21

16 17 18 19 20 21

0

0.5

1

40
60

−0.1

−0.05

0

0.05

0.1

Figure 7. Simulation results from the MPC approach including the quadratic
degradation cost function.
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we solve

−Cbatcinv +
L∑

n=1

cEP − cbat
EP

(1 + IRR)n
= 0 (32)

for the IRR, where cEP − cbat
EP is the energy and power

utilization costs saved with a battery investment and L is the
battery lifetime in years.

The controller configurations, the IRRs, and battery life-
times L results are summarized in Table VI. Instead of ex-
plicitly accounting for degradation costs, the ‘MPC standard’
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Table VI
COMPARISON OF PROPOSED CONTROLLERS @ EOL = 0.5

Controller heuristic MPC standard MPC degrad
Parameters SOCH = 0.8 SOCH = 0.78 SOCH = 1

SOCL = 0.3 SOCL = 0.1 SOCL = 0
a = 0 a = 0.37
b = 0e/h b = 42e/h
c = 0e/(MWh) c = 0e/(MWh)
d = 0e/(MWh) d = 6.5e/(MWh)
e = 0e/((MW)2 h) e = 60e/((MW)2 h)

Battery
lifetime (L)

13 months 7.3 years 19 years

Internal Rate
of Return
(IRR)

-69% -8% 3.1%

Achievable
full cycles

206 1672 4651

controller uses a reduced SOC range to heuristically avoid
degradation. We tuned the bounds of the SOC range to achieve
the best battery lifetime. Despite the tuning, the ‘MPC degrad’
approach performs much better, increasing the battery lifetime
and resulting in a positive IRR.

Note that we also attempted to use the linear basic battery
model within our MPC algorithm and found that for this
application, the results were identical to those generated with
the extended basic battery model. This is because, for this
application, the battery is not driven to extreme high or low
SOCs.

V. CONCLUSION AND OUTLOOK

In this paper, we presented methods to model and identify
fast battery dynamics and slow battery degradation processes.
Though we have assumed Li-ion batteries within this paper,
our methods could be applied to different chemical storage
technologies such as NaS, or lead acid. These models allow us
to optimally control batteries for power system applications.
We presented four different models that capture fast battery
dynamics, and showed how one can identify the parameters of
the nonlinear models and use them to compute the parameters
of the linear models. The models were identified and validated
on the high-fidelity Li-ion DUALFOIL model. We use a linear
extended battery model within our controller. This model is
able to capture the rate capacity effect, which allows us to
accurately model the capabilities of the battery in high/low
SOC regimes.

We also developed a method to identify battery degradation.
The method can be used on battery systems stimulated with
arbitrary patterns that could correspond to those in real battery
applications. Thus, this method could be run online. The result
is a degradation map that describes the impact of discrete types
of control actions on the lost battery charge. The degradation
map is transformed to an economic cost map from which a
quadratic cost function is derived. This economic cost function
can be incorporated into a quadratic MPC framework that
relies on an economic objective function. Thus, the objective
function operates solely within the cost domain, avoiding
the need for a multi-objective formulation. Finally, we have
shown through simulation that the MPC approach is able to

extend battery lifetimes and increase IRRs as compared to
conventional control approaches.

There are many avenues for future research. The degradation
process represented within the DUALFOIL model may not
correspond to that of a real battery, and so it will be important
to investigate the performance of the approaches on real
systems. Using the DUALFOIL model has given us valuable
insight into degradation modeling and a preliminary validation
of our methodology; however, the quantitative values presented
in this paper (battery lifetimes, IRRs, etc.) should be under-
stood in relative, not absolute, terms. Important questions for
the future include whether the stationary degradation process
serves a good approximation of the real process and how
sensitive the economic results are to the battery model and
parameters.
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