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Abstract—Recent research has shown that thermostatically
controlled loads (TCLs) can provide power system services.
However, a key challenge is to achieve coordinated control of
large populations of resources using existing communication
and control infrastructure or with minimal addition of new
infrastructure. In this paper, we assume that we only have access
to realistic measurements, i.e. data from residential smart meters
every 15 minutes and noisy real-time measurements of the aggre-
gate power consumption of TCLs from distribution substations.
Our contribution is to develop a moving horizon state estimator
(MHSE) to estimate the states of individual stochastic TCLs from
these measurements. This is in contrast to previous work that
focused on estimating the states of aggregate system models.
The proposed MHSE is benchmarked against a simpler model-
based prediction. We also propose a scalable closed-loop control
structure that uses the MHSE method to provide frequency
control with TCL populations. We demonstrate our results via a
number of case studies with different TCL aggregations, process
and measurement noise characteristics, and controller forcing
levels. Our simulations show that the MHSE generally provides
accurate state estimates and improves the controller performance.

Index Terms—Thermostatically controlled loads, state estima-
tion, demand response, frequency control, hybrid systems

I. INTRODUCTION

The increasing penetration of fluctuating renewable energy
sources in the electricity grid calls for more ancillary services,
such as frequency control [1]. Although these services tradi-
tionally come from conventional generators, there is a recent
interest in using the flexibility of loads for the same purpose
[2]. The active participation of loads in power systems is
expected to reduce the cost of ancillary services, increase their
efficiency, and/or reduce their environmental footprint.

Recent research has focused on the use of aggregations
of thermostatically controlled loads (TCLs), such as space
heaters, air conditioners, refrigerators, and electric water
heaters, to provide power system services [2]. TCLs are well-
suited to this task because they are hybrid systems that operate
with hysteresis controllers and so they have inherent opera-
tional flexibility. This means that their power consumption can
be shifted in time, within limits, without consumers noticing.
Additionally, their dynamics are relatively simple and they
are easy to control. However, coordinating the operation of
a large population of TCLs is challenging, and may require
new control algorithms as well as significant investments in
sensing, communication, and control infrastructure.

While some of the literature on direct load control with
TCLs uses state-free models, e.g., input-output models [3],
most uses dynamical system models and assumes access to

state measurements, e.g., [4]–[6]. Recent research has focused
on state estimation to reduce the implementation costs of
direct load control schemes. For example, [7], [8] proposed
a modeling method for TCL aggregations based on Markov
chains, and applied a Kalman Filter for state estimation using
partial state or aggregate power measurements. Ref. [9] used
a similar modeling approach and proposed a moving horizon
state estimation (MHSE) method to estimate aggregate model
states, but without considering measurement noise. Ref. [10]
proposed a four state aggregate system model, similar to
that in [11], and a particle filter to estimate aggregate TCL
states. A state estimation scheme for a model of aggregated
TCLs based on partial differential equations was proposed
in [12]. However, these approaches rely on aggregate load
models, and estimate the distribution of TCLs in a normalized
temperature state space, which do not perfectly capture the
states of individual loads.

In contrast to the above work, we attempt to estimate
individual TCL states, i.e. temperatures and on/off modes.
This is expected to improve control performance because it
will give the controller more information about the effect
of both local and external control actions on the aggregate
power consumption. Stochastic hybrid system state estimation
problems are often solved with ‘multiple model’ estimation
schemes that involve a filter for each mode [13]. However, with
large numbers of modes, as in our problem, these approaches
are intractable [14]. Therefore, we transform our hybrid system
into a mixed logical dynamical (MLD) system [15] and pro-
pose a novel MHSE method that can be cast as a mixed-integer
linear program (MILP). Our method can be used together
with a broadcast controller to enable provision of fast time
scale services with high accuracy requirements, for example,
load frequency control (LFC), with minimal investment in
new infrastructure. This paper extends our previous work [16],
which focused exclusively on the effect of process noise. In
this paper, we investigate the realistic case that includes both
process and measurement noise.

The contributions of this work are threefold. First, we
develop a MHSE method that allows us to estimate individual
TCL load states with realistic data in the presence of both
process and measurement noise. Second, we benchmark the
MHSE method against a simpler model-based prediction ap-
proach, which gives us insight into the effect of noise and
forcing levels on estimation performance. Third, we propose
a scalable hierarchical closed-loop control structure for LFC
provision with TCL aggregations. We report simulation results
considering a realistic setup with real-time aggregate power
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Fig. 1. The proposed control and communication architecture.

measurements from several distribution substations, and low-
frequency data packages with TCL state measurements.

Section II describes the control and communication archi-
tecture, Section III introduces the MLD model and the control
scheme, and Section IV presents the MHSE method. Section V
explains our investigations, and simulation results are reported
in Sections VI and VII, while Section VIII concludes.

II. PROBLEM DESCRIPTION

Consider an aggregator controlling a TCL population to
provide power system services. Ideally the aggregator would
have access to high frequency state measurements from each
individual TCL, but most smart meters have data transmission
limitations. Therefore, we assume that residential smart meters
are only able to transmit data to the aggregator every 15
minutes, though they are able to collect and store TCL state
measurements every 10 seconds [17]. We also assume that
the aggregator has access to aggregate power measurements
from distribution substations every 10 seconds, which is a
reasonable sample rate for frequency control provision. Using
these measurements together with predictions of the uncon-
trolled load at each substation, we can estimate the aggregate
power consumption of the controlled TCLs. Therefore, within
each 15 minute interval we must estimate the TCLs’ states
using noisy aggregate power measurements along with high
frequency state measurements collected in the previous inter-
val. The benefit of this approach is that it requires little/no
new infrastructure – the only things required are smart meters
at each household, a method of measuring and communicating
thermostat states (for example, via a simple home energy
management system), and power meters at distribution, i.e.
medium-low voltage, substations.

The proposed control and communication architecture is
shown in Fig. 1. Solid lines represent high frequency commu-
nication flows (every 10 seconds), whereas dashed lines show
low frequency communication flows (every 15 minutes). The
blue lines represent the measurements, whereas the red lines
the control signals. To keep the estimation problem tractable,
we propose a hierarchical architecture where the estimation
is performed independently for each substation. However, the
control is performed centrally and signals are broadcast to all
TCLs based on the individual load state estimates.

III. MODELING & CONTROL

A. TCL Modeling

We use the two-state hybrid TCL model developed in [18],
[19] to model individual TCLs. Denote the TCL temperature
and the on/off mode at time step t by xc,t ∈ R and xl,t ∈
{0, 1}, respectively. A heating TCL’s stochastic discrete-time
dynamics can be expressed as

xc,t+1 = axc,t + bxl,t + fTα,t + wt , (1)

xl,t+1 =







0 if xc,t+1 ≥ M

1 if xc,t+1 ≤ m

xl,t otherwise

, (2)

where a = e−∆t/(CR), b = (1−a)RCpPn, f = (1−a), ∆t is
the discretization time step, C is the thermal capacitance, R
is the thermal resistance, Cp is the coefficient of performance,
Pn is the rated power, Tα,t is the ambient temperature, and
wt is the process noise, which includes plant-model mismatch
and errors in predictions of external parameters such as Tα,t

and consumer behavior. Additionally, M = Tsp + 0.5Tdb and
m = Tsp − 0.5Tdb are the upper and lower temperature dead-
band limits, respectively, where Tsp is the thermostat temper-
ature set-point and Tdb is the dead-band width.

By introducing the auxiliary binary variables δ1,t, δ2,t, δ3,t,
and δ4,t, the stochastic hybrid system can be represented as
an MLD system [15]

xt+1 =
(
a 0
0 0

)

︸ ︷︷ ︸

A

xt+
(
0 0 0 b
0 0 1 0

)

︸ ︷︷ ︸

B

δt+
(
f
0

)

Tα,t

︸ ︷︷ ︸

Ft

+
(wt

0

)

, (3)

Ẽ1δt ≤ Ẽ2xt + Ẽ3 , (4)

where xt := [xc,t xl,t]
T , δt := [δ1,t δ2,t δ3,t δ4,t]

T ,
[δ1,t = 1] ↔ [xc,t ≥ M ], [δ2,t = 1] ↔ [xc,t ≤ m],
δ3,t = xl,t+1, and δ4,t = xl,t. The mixed-integer linear
inequalities (4) represent the internal hysteresis controller of
the TCL. Note that these equations are similar to (11a)-(11b)
in [15], except we include two additional terms – ambient
temperature and process noise – and we do not allow the

power consumption to vary continuously. Ẽ1, Ẽ2 and Ẽ3 are
defined based on E1, E2, E3, E4, and E5 from [15], [16] as
follows: Ẽ2 = E4; Ẽ3 = E1 + E5; Ẽ1(:, k) = E2(:, k) for

k = {1, 2, 3}, and Ẽ1(:, 4) = E2(:, 4) + E3.

A heterogeneous aggregation of nap TCLs can be modeled
by stacking together models of individual TCLs, leading to
the following state-space representation

xt+1 = Axt +Bδt + F t +wt , (5)

E1δt ≤ E2xt +E3 , (6)

where xt, δt, wt, E3 are stacked vectors, e.g., xt =
[(x1

t )
T . . . (x

nap

t )T ]T , and A, B, F t, E1 and E2 are block
diagonal matrices with the matrices of the individual TCLs on
the diagonals.

The output depends upon if full state information or only
noisy aggregate power measurements are available

yt =

{

C1xt , if t = jTm , j ∈ N

C2xt + vt , otherwise
, (7)

where C1 = I; C2 = [0 P 1
n 0 P 2

n . . . 0 P
nap

n ], vt is measure-
ment noise; and Tm is the period of TCL-level measurements.

B. Control Design

The controller broadcasts signals to the TCLs, which at-
tempt to track a power trajectory. We extend the closed-
loop rule-based control algorithm in [6], [16] to handle the
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Fig. 2. Control loop including moving horizon state estimation (MHSE).

hierarchical architecture described in Section II. At each time
step t, the controller calculates the required change in power

∆Pt = Pset,t − P̂agg,t −∆P̂int,t , (8)

where Pset,t is the desired set-point, P̂agg,t is the mea-

sured/estimated TCL aggregate power, and ∆P̂int,t is the
estimated change in power resulting from the TCLs’ inter-
nal hysteresis controller actions, computable from TCL state
estimates x̂l,t. Let Pn denote the vector of TCL power ratings;
nsub the number of substations in the network; P i

agg,t the

actual TCL aggregate power, P̄ i
UL,t the predicted uncontrolled

load, P i
UL,t = P̄ i

UL,t + vt the actual uncontrolled load, and

P i
meas,t = P i

agg,t + P i
UL,t the noisy aggregate power measure-

ment, all at substation i. There are two ways to calculate P̂agg,t:

Method A) based on the state estimates, i.e. P̂agg,t = Pnx̂l,t,
or Method B) based on the aggregate power measurements,

i.e. P̂agg,t =
∑nsub

i=1

(

P i
meas,t − P̄ i

UL,t

)

.
If ∆Pt < 0 additional off switching is required, whereas if

∆Pt > 0 additional on switching is required. The TCLs that
will be switched are determined according to a priority list
based on their estimated state of charge

ˆSOCt =
x̂c,t −m

M −m
, (9)

where x̂c,t is the TCL’s estimated temperature. At each time
step, the controller broadcasts a pair [SOCth,t, st], where

SOCth,t ∈ [0, 1] is the ˆSOCt of the last TCL that enters the
priority list, and st ∈ {0, 1} is a signal indicating whether an
increase in consumption (st = 1) or a decrease in consumption
(st = 0) is required. The TCLs that are outside of their
dead-band are not controllable and ignore the control signal,
whereas the rest respond based on their SOC.

Control actions effectively tighten TCL dead-bands. Define
a TCL’s temperature threshold as xth,t = SOCth,t(M−m)+m.

Set M̃ = xth,t and m̃ = m if st = 0, and M̃ = M and

m̃ = xth,t if st = 1. Replacing M and m with M̃ and m̃
in the logical relations of Section III-A, we get [δ1,t = 1] ↔
[xc,t ≥ M̃ ] and [δ2,t = 1] ↔ [xc,t ≤ m̃]. Therefore, the
external control actions can be directly incorporated into the

MLD framework. The only difference is that the matrices Ẽ1

and Ẽ3 now depend on M̃ and m̃, and so are time-varying.
The control loop including MHSE is shown in Fig. 2. Note

that the aggregator applies the MHSE method independently
for each substation i.

IV. STATE ESTIMATION PROBLEM

We propose an MHSE method to estimate TCL
states when current TCL state measurements are un-
available. At each time step t 6= jTm, j ∈ N we solve

a multi-period MILP with TCL temperatures, on/off
modes, auxiliary binary variables, process and measure-
ment noise as optimization variables. Define the optimiza-

tion vector as x
opt
t := [x̂t−N+1|t, ψ̂t−N+1|t, . . . , ψ̂t|t], where

ψ̂k|t := [δ̂k|t, ŵk|t, v̂k|t], δ̂k|t ∈ {0, 1}4nap , ŵk|t ∈ R
nap ,

v̂k|t ∈ R, k ∈ [t−N +1, t], N as the estimation horizon, and
·̂k|t as the estimate of · at time step k using measurements up
to time step t. Note that x̂t−N+2|t, . . . , x̂t|t can be determined

from δ̂k|t, k ∈ [t − N + 1, t], and therefore these additional
optimization variables are not needed. With this notation, the
estimation problem is

min
x

opt
t

t
∑

k=t−N+1

m1 |ŷk|t − yk|+m2 ||Q−1ŵk|t||1

+m3 |R−1v̂k|t|+
t−1
∑

k=t−N+1

m4 ||Q−1
(

x̂c,k|t − x̂c,k|t−1

)

||1

+m5

nap
∑

i=1

∣

∣

∣
Ŵ i

k|t −W i
∣

∣

∣
+m6

∣

∣

∣
V̂k|t − V

∣

∣

∣
, (10)

s.t. x̂k+1|t = Ax̂k|t +Bδ̂k|t + F t + ŵk|t , (11)

ŷk|t = C2x̂k|t + v̂k|t , (12)

E1δ̂k|t ≤ E2x̂k|t +E3 , (13)

x̂k|t = xk|t , ∀ t ∈ [jTm + 1, jTm +N − 1] ,

∀ k ∈ [t−N + 1, jTm] , (14)

where Q−1 and R−1 are the inverses of the process and
measurement noise covariance matrices, respectively, m1−m6

are weighting factors, W i is a known statistic on the process
noise of TCL i (e.g., the mean value), V is a known statistic

on the measurement noise, and Ŵ i
k|t and V̂k|t are the current

estimates of those statistics computed from ŵk|t and v̂k|t.
The first term of (10) minimizes the difference between the

output calculated from the estimated states and the measured
aggregate power. The second and third terms penalize the
process and measurement noise. The fourth term is needed
to link the current estimation problem to the results of the
previous estimation problems. Note that only the continuous
states are included in the fourth term. The fifth and sixth terms
require that the current noise statistics are close to their known
values. Equations (11)-(13) describe the TCL hybrid dynamics.
For t ∈ [jTm+1, jTm+N − 1], j ∈ N, noise-free TCL state
measurements are available, which are taken into account by
introducing the equality constraint (14), and setting m4 = 0
in (10). For t ≥ jTm+N , (14) is not considered and m4 6= 0.

Note that the terms of (10) that are related to either w
or v are normalized by either Q or R, which are assumed
known. This ensures that the numeric values of the penalties on
process and measurement noise are in the same range, which
is essential for good performance. However, no assumption
on the probability distributions of the noises is needed. The
MHSE performance can be improved by appropriately tuning
the weighting factors m1 − m6. For example, for longer
estimation horizons, higher m5 and m6 might be desired.
In addition, m4 can be time-varying, i.e. a function of the
quality of recent estimates. If no noise statistics are available,
the proposed method can be applied by dropping the last two
terms, and tuning m2 and m4 based on the numeric range of
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TABLE I.
SPACE HEATER PARAMETERS, ADAPTED FROM [7], [8]

Pn ∼ U(5, 9) kW C ∼ U(5, 9) kWh/oC R ∼ U(1.5, 2.5) oC/kW

Cp ∼ U(2, 3) Tsp ∼ U(19, 23) oC Tdb ∼ U(0.25, 1) oC

w and m3 based on the numeric range of v.
The MHSE problem is a large MILP, even for relatively

small TCL aggregations and estimation horizons. Note that a
1-norm minimization is used in (10), instead of least squares
minimization as in [15], [20], [21], because it can be reformu-
lated into a set of linear inequalities. Adopting the hierarchical
architecture of Section II, the estimation problem can be solved
independently and in parallel for each substation, which makes
it tractable in real-time since the number of consumers per
substation and/or feeder is low, e.g., 20 to 40 consumers.

V. INVESTIGATION SETUP

We demonstrate the performance of the MHSE method via
two case studies. In case study A, we investigate the estima-
tion quality under different process and measurement noise
levels, and different controller forcing levels, using an open-
loop controller. This analysis provides insights on the noise
levels that could be handled by the estimator in real-world
applications. In case study B, we demonstrate how the MHSE
method can improve the performance of closed-loop LFC with
TCL aggregations. For both case studies, we use space heaters
and parameterize them by drawing their parameters from the
uniform probability distributions of Table I.

We assume that wt and vt follow zero-mean normal distri-
butions with known variances (the same for all TCLs) and no
autocorrelation. Therefore, the last two terms of (10) become

m5

nap
∑

i=1

1

σi
w

∣

∣

∣
µ̂i

w,k|t − µi
w

∣

∣

∣
+m6

1

σv

∣

∣µ̂v,k|t − µv

∣

∣ , (15)

where σi
w is the process noise standard deviation for TCL i,

σv is the measurement noise standard deviation, and the noise
means µi

w = µv = 0. In this case, Q is diagonal.
Measurements of TCL states are assumed to be available

every Tm = 15 minutes. We fix m1 = 108, and so the
first term of (10) is a soft constraint, and we set m2 − m6

equal to 1. The choice of m4 is critical for the convergence of
the estimator [21], and an empirical investigation showed that
m4 = 1 leads to a reasonable performance. The theoretically
optimal estimation period N depends on the aggregation size,
and could be chosen applying the observability tests proposed
in [15]. However, in practical application, N would likely
be determined by real-time computational limitations, and so
we empirically select N = 10 based on simulation results.
All simulations are done with a time step of 10 seconds in
MATLAB using a 4 core machine (2.83 GHz) with 8 GB
RAM, and the MHSE problem was solved using CPLEX.

VI. BENCHMARKING THE MHSE METHOD

Consider a population of 20 TCLs connected at a sub-
station along with other uncontrolled loads, and assume a
TCL coincident load equal to 20% of the total substation
load Psub. We investigate several options for process and
measurement noise: σw = {5 · 10−4, 10−3, 5 · 10−3},
referred to as “low”, “medium”, and “high” process noise, and
σv = {0, 0.02, 0.05, 0.1} ·Psub, referred to as “zero”, “low”,
“medium”, and “high” measurement noise. The measurement
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Fig. 3. Estimation errors for MHSE and the model-based predictor.

noise is given as a percentage of Psub since it represents the
prediction errors of the uncontrolled demand.

We compare the MHSE method against a simple model-
based prediction approach, where the states are computed from
(5), (6) assuming wt = 0. We run simulations for 15 minutes
and use as indicators the estimation errors of temperature,
on/off mode, and aggregate power consumption at each time
step. The controller broadcasts the random control signals

st = |st−1 − rs|, SOCth,t = SOCth,t−1 − rsoc(−1)st , (16)

where rs ∈ {0, 1} is a discrete random variable that takes the
value 1 with probability Ps, and rsoc ∈ [0, Rsoc] is a continuous
uniformly distributed random variable. The interpretation of
Ps is the probability with which the control direction changes
between two consecutive time steps. The variable Rsoc de-
scribes the change in the control signal magnitude between
two consecutive time steps. Therefore, higher values of Ps

and/or Rsoc result in more aggressive control actions. In this
paper, two different forcing levels are investigated: (a) a low
forcing scenario with Ps = 0.1, and (b) a high forcing scenario
with Ps = 0.5. In both cases, we fix Rsoc = 0.025.

Depending on the measurement noise level, a group of TCLs
with similar power ratings might not be distinguishable by
the MHSE. However, what matters most is to estimate the
aggregate power and the SOC of the group. For this reason, we
cluster the TCLs by their power ratings and use these clusters
to assess the estimation quality. Denote the number of clusters
by ncl, cluster i by CLi, and define its SOC as

SOCCLi,t =

∑

j ∈ CLi
(xj

c,t −mj)
∑

j ∈ CLi
(M j −mj)

. (17)

The estimated SOC of cluster i can be defined similarly using

x̂j
c,t. We define the SOC and on/off mode estimation errors as

εsoc,t =
∑ncl

i=1

∣

∣

∣
SOCCLi,t −

ˆSOCCLi,t

∣

∣

∣
, (18)

εon/off,t =
∑ncl

i=1

∣

∣

∣

∑

j ∈ CLi

uj
t −

∑

j ∈ CLi

ûj
t

∣

∣

∣
. (19)

We define the TCL aggregate power estimation error as

εagg,t = C2xt −C2x̂t . (20)

The mean absolute error (MAE) over the simulation horizon

Nsim is calculated as MAE = (1/Nsim) ·
∑Nsim

t=1 |εt|, where εt
is any of εsoc,t, εon/off,t, and εagg,t.

Figure 3 compares the MHSE method to the model-based
prediction approach for a case with medium process noise,
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Fig. 4. Comparison of MHSE method versus the model-based prediction approach for high forcing control. Red lines indicate medians.

low measurement noise, high forcing, and ncl = 5 clusters.
The MHSE method provides better estimates most of the time,
and reduces MAEsoc by 13%, MAEon/off by 19%, and MAEagg

by 47%. To more-fully benchmark the MHSE method, we
repeat this analysis for each of the twelve combinations of
process and measurement noise, and for each of the two
forcing levels. For each case, we run 200 simulations with
randomly generated TCL populations and noise realizations.
Figure 4 shows histograms of estimation improvement for high
forcing, where the red lines correspond to the medians.

With the exception of the cases {low w, zero v} and
{medium w, zero v}, the MHSE method does not improve
the SOC estimates. This is because the TCL temperatures
cannot be observed directly, but only through the on/off mode
estimates. However, even with poor SOC estimates, the on/off
modes and aggregate power can be estimated well for most of
the cases. If v = 0, the MHSE method drastically improves
the estimation quality especially for aggregate power, as also

found in [16]. For all cases with low v and for the case {high
w, medium v}, the estimates of the on/off modes and aggregate
power generally improve, resulting in positive medians in the
range 1.1%−33.9%. Interestingly, for the case {high w, low v}
the MHSE method achieves better aggregate power estimates
for all 200 scenarios, and better on/off mode estimates for
87% of them. On the other hand, for all cases with high v,
the MHSE method performance is poor.

Figure 5 shows the results for on/off mode and aggregate
power estimation for low controller forcing. For SOC estimates
and for all cases with zero or high v, we observed patterns
similar to those seen in the high forcing case; therefore, those
histograms are omitted due to space limitations. The MHSE
method outperforms the model-based prediction only for the
cases {medium w, low v}, and {high w, low v}. Also, note
that the resulting improvement is worse than in the respective
high forcing cases. This provides useful intuition: the higher
the forcing level, the more information is retrieved from
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Fig. 5. Comparison of MHSE method versus the model-based prediction
approach for low forcing control. Red lines indicate medians.

the aggregate power measurements improving the estimation
quality. Overall, our results indicate that the MHSE method
would perform the best in applications with high process and
low measurement noise, irrespective of the forcing level.

VII. APPLICATION OF MHSE IN FREQUENCY CONTROL

We now investigate the value of MHSE in closed-loop
control. Consider a population of nap TCLs evenly distributed
among nsub distribution substations. Based on Section VI, we
select σw = 5 · 10−3 and σv = 0.02 · Psub, and fix the noise
realizations. The desired set-point is a function of the baseline
consumption of the TCL population (Pb,t), the control band
(α), and the control signal (Yt)

Pset,t = Pb,t + αYtPb,t . (21)

We test two control signals: (a) an extract of the Swiss LFC
signal from 2009 with α = 0.5 and (b) the high-frequency
component of the same signal obtained by applying a high-
pass filter with cutoff frequency 1/30 Hz and α = 3. Both
signals are shown in Fig. 6. Similar decompositions of the
frequency signal into low and high frequency components
were proposed in [22], [23]. The reason we investigate (b)
is that a larger control band can be offered without energy
constraint violations, and more forcing will be necessary,
which is expected to improve the estimation/control perfor-
mance based on Section VI. In each case, we compare a
controller with MHSE against a controller with the model-
based predictor, and consider Methods A and B to calculate

P̂agg,t. We also investigate a reference case with perfect TCL
state information, which gives us a performance bound. Two

0 10 20 30 40 50 60
−40

−20

0

20

40

Time (min)

S
ig

na
l (

%
)

 

 

LFC Low−frequency part High−frequency part

Fig. 6. High and low frequency components of the LFC signal.

TABLE II.
RMSE VALUES FOR SET-POINT TRACKING

2 Substations 20 Substations

Method A B A B

Standard LFC

Reference (kW) 2.21 N/A 2.13 N/A

Prediction (kW) 11.84 16.40 31.66 36.67
MHSE (kW) 10.26 14.56 28.55 35.09
Improvement (%) 13.34 11.22 9.82 4.31

High frequency part of LFC

Reference (kW) 2.29 N/A 2.18 N/A

Prediction (kW) 23.29 18.26 75.75 44.08
MHSE (kW) 18.13 15.67 55.18 40.18
Improvement (%) 22.16 14.18 27.16 8.85

aggregation sizes are considered: nap = 40 TCLs distributed
among nsub = 2 substations, and nap = 400 TCLs distributed
among nsub = 20 substations. All simulations are performed
for 1 hour with a time step of 10 seconds.

We assess the controller performance by calculating the
root mean square error (RMSE) between the desired set-
point and the TCL aggregate power consumption, and we
summarize the results in Table II. For all cases, the MHSE
method outperforms the model-based predictor resulting in
lower RMSE values. The improvement is more pronounced
in the case of the high-frequency signal due to higher forcing,
which is consistent with the results of Section VI. Interestingly,

the best choice of method to calculate P̂agg,t depends on the
signal. For the LFC signal Method A is preferable, whereas
for the high-frequency signal Method B performs better. The
reason is that the higher the frequency content of the signal,
the higher the signal to (measurement) noise ratio; therefore,
the aggregate power measurements P i

meas,t can be trusted more.
These observations are valid for both nsub = 2 and nsub = 20.
The best results for each case are highlighted in grey in
Table II. Overall, the MHSE method reduces the RMSE by
approximately 14% for nsub = 2 and 9% for nsub = 20.

The tracking performance and the broadcasted control sig-
nals for nsub = 20 are shown in Figs. 7 and 8. Note that
the high-frequency signal results in a more aggressive st time
series, and so SOCth values are much closer to 0.5, compared
to that of the LFC signal. Table III shows the average number
of switching actions per TCL for the highlighted cases of
Table II. For the LFC signal, MHSE slightly increases the
number of switching actions compared to the model-based
predictor; however, for the high-frequency signal, it signifi-
cantly reduces the number of switching actions, in particular
for nsub = 2. In this case, MHSE not only improves controller
performance, but also decreases the wear on TCLs.

Beyond filtering the LFC signal, there are additional ways
of increasing forcing levels to improve MHSE/controller per-
formance. For example, the TCL population could be divided
into two groups, each tasked with following a high frequency
signal that sum to the original LFC signal. Additionally, one
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Fig. 7. Tracking performance for the LFC signal.
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Fig. 8. Tracking performance for the high frequency part of the LFC signal.

could add an artificial signal to the LFC signal, and that signal
could be balanced by another resource.

VIII. CONCLUDING REMARKS

In this paper, we presented a novel moving horizon state es-
timation (MHSE) method to estimate individual states of ther-
mostatically controlled loads (TCLs). The method improves
control performance in power trajectory tracking applications,
and is designed to work with realistic measurements, i.e. real-
time noisy aggregate power measurements from distribution
substations and TCL state measurements from smart meters
that arrive at lower frequency intervals. We demonstrated the
MHSE performance under different process and measurement
noise characteristics and controller forcing levels, and bench-
marked it against a simpler model-based predictor.

Simulations showed that the proposed method provides
accurate estimates for a certain spectrum of process and
measurement noise. We also proposed a scalable hierarchi-
cal closed-loop control structure for load frequency control
provision with TCLs, which uses the MHSE method. The
controller/estimation performance was assessed for different
frequency control signals, and for different aggregations sizes.
Based on our simulations, MHSE generally reduces the con-
troller tracking errors. Future work will investigate the esti-
mator performance with different types of noise distributions,
and in the presence of autocorrelation.
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