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Abstract—When energy storage units (ESUs) within the dis-
tribution grid, e.g. batteries, provide local services such as PV
integration support, peak shaving, and infrastructure upgrade
deferral, they are inactive or only partially used most of time.
Moreover, they are often not profitable because of their high
investment costs. Their unused capacities could be used to provide
power system services, such as frequency control, allowing them
to generate additional revenues. However, individual units might
not be available to provide system services over the entire
contract duration, since they must also provide their local
services. This paper shows how an aggregation of distributed
ESUs can simultaneously provide local services individually and
system services in aggregate. Using a model predictive control
approach, a central scheduler dynamically allocates parts of the
energy and power capacities of each ESU to either the local or
grid service with the objective of maximizing the profit of the
aggregation. A key contribution of this paper is the development
of an algorithm that handles both resource aggregation and
optimal provision of multiple services. We find that multitasking
can almost double an ESU’s profits as compared with a single-
service approach, and that the benefits from aggregation depend
on the grid service market structure and how often the local
service is required.
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I. INTRODUCTION

The number of energy storage units (ESUs) within the

distribution grid is likely to increase since they can be used

for a variety of local services including photovoltaic (PV) inte-

gration support, peak shaving, infrastructure upgrade deferral,

and powering electric vehicles. However, the purchase cost of

distributed ESUs, especially batteries, is expected to remain

high in the near- to middle-term future [1]. A way to improve

the economics of an ESU was described in [2]: when not fully

used for its local service, an ESU could provide other services

to power systems, such as frequency control. This so-called

multitasking approach has been the subject of several recent

publications, for example, [3] which analyzes storage capacity

allocation under grid constraints, considering spot and intraday

markets, and frequency control markets simultaneously, and [4]

where the focus is on peak shaving, electricity trading, fre-

quency control, and uninterruptible power supply service.

A key challenge to power system service provision with

ESUs is that individual units might not be available to provide

the contracted service over the entire contract duration because

they must also provide their local service. Therefore, there is a

benefit to resource aggregation. Many papers have investigated

the use of aggregations of distributed resources with limited

energy capacities to provide both local and system services,

for example, [5] develops methods to schedule/control electric

vehicle charging to minimize charging costs and provide fre-

quency regulation while minimizing negative network impacts,

[6] evaluates the ability of electric water heaters to provide

frequency control, and [7] develops methods to schedule/control

thermostatically controlled loads to provide frequency regula-

tion in addition to actively managing the distribution network

to increase PV energy absorption. However, these papers do not

co-optimize the allocation of resources to the local and system

services. Instead, they either allocate a predefined power capac-

ity to frequency control, or they optimize the schedule/control

for the local services and then use the remaining flexibility

for frequency control. Also, they focus on aggregations of

resources providing the same local service, rather than resources

providing diverse local services.

The contributions of this paper are threefold. First, we de-

velop an algorithm that dynamically co-optimize the allocation

of diverse ESUs’ energy and power capacities over local and

power system services with the aim of maximizing the profit of

the aggregation. Our algorithm provides day- and hour-ahead

allocation schedules that tell each ESU how much power and

energy capacity to reserve for each service at each time step;

our focus is not on real-time control. Second, through a case

study, we investigate the benefits of combining aggregation

and multitasking. Third, an additional case study highlights the

impact of the power system service contract duration.

We restrict our analysis to batteries as the sole energy storage

technology; however, we consider batteries providing different

local services. Since batteries have significant degradation costs

(per kWh cycled), they are only attractive for local services

when the alternative would lead to a higher cost per kWh. We

therefore restrict ourselves to local services for which batteries

would perform well:

• PV-l: minimization of PV curtailment when subject to line

export limitation. If no battery were installed at this location,

the alternative would be to either curtail the PV generator or

to upgrade the line;

• PV-t: minimization of PV curtailment when the PV generator

is connected to the grid through a transformer with limited

thermal capacity. If no battery were installed at this location,
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the alternatives would be to either curtail the PV generator

or to upgrade the transformer;

• Load-l: customer load smoothing when the load profile

sometimes exceeds the line import power. If no battery were

installed at this location, the alternative would be to either

curtail the load or upgrade the line;

• Load-t: customer load smoothing when the customer is

connected to the grid through a transformer with limited

thermal capacity. If no battery were installed at this location,

the alternative would be to either curtail the load or upgrade

the transformer.

The only power system service we consider is primary

frequency control (PFC), since we found in [8] that it might

soon become cost effective in Europe to provide this service

with batteries. If secondary frequency control revenues increase

or battery costs decrease, it could be considered as well, using

the same methodology as for PFC.

Section II describes the models and scheduling algorithm.

Section III details the case studies, Section IV discusses the

results, and Section V provides concluding remarks.

II. MODELS AND SCHEDULING ALGORITHM

To model an ESU aggregation, we define a Local Area

Control (LAC) as a building block. Each LAC, designated by

the subscript i, represents one ESU and its local environment,

and contains at least:

• One ESU, characterized by its energy and power capacities

(Ecap
i , P cap

i ), its charge and discharge efficiencies (ηc
i , η

d
i ),

its self-discharge per time step (1-ηsd
i ), and its linear and

quadratic degradation costs (dl
i, d

q
i );

• One (aggregated) load profile;

• One electricity tariff profile (purchases) and one electricity

feed-in tariff profile (sales).

Depending on the local service provided, the following options

can also be present:

• One PV generation profile (local service: PV-l or PV-t);

• One line with limited export/import capacity, which creates

a bottleneck between the grid and the LAC (local service:

PV-l or Load-l);

• One transformer with limited thermal capacity that creates

a bottleneck between the grid and the LAC (local service:

PV-t or Load-t),

and the following optimization variables:

• One PV curtailment profile (local service: PV-l or PV-t);

• One load curtailment profile (local service: Load-l or Load-

t).

Since we focus on grid constraints associated with ESUs

connected to the rest of the network through a bottleneck, we

do not explicitly model power flow, as in [7]. In the future,

our algorithm could be extended to explicitly include network

constraints.

The goal of the scheduling algorithm is to maximize the profit

of an existing ESU aggregation. We do not consider investment
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Fig. 1. Example of energy and power capacity allocation schedule.

costs, but instead we do consider ESU battery degradation costs

as operational costs. The problem of how to attribute the benefits

to all possible stakeholders is not considered here, nor do we

address regulatory barriers to multitasking [3].

We use a Model Predictive Control (MPC) [9] approach

to compute the allocation schedule. This receding horizon

approach allows us to handle plant-model mismatch and could

easily be extended in the future to handle forecast error and

stochasticity as well. In this paper, we are primarily interested

in understanding upper bounds on ESU aggregation revenues

achievable via multitasking and so we do not investigate the

effect of forecast error and stochasticity. However, we use MPC

to handle limited-horizon, but perfect forecasts (detailed in

Section III) and the mismatch between the transformer model

used to represent the real system and that used within our

controller (detailed in Section II-C). We used YALMIP [10]

to represent our set of equations and constraints, and to build

our MPC controller. Since we aim to control large numbers of

ESUs, we use linear and quadratic models, ensuring that the

system model is computationally tractable.

In the following four sections we describe our modeling ap-

proaches. Section II-A presents our ESU energy and power ca-

pacity allocation model, while Section II-B describes our meth-

ods of modeling the cost/profit associated with buying/selling

electricity from/to the grid, the cost of battery degradation,

and the load curtailment penalty. Section II-C describes our

transformer model and overheating penalty, and Section II-D

details how we model the profit realized through PFC provision.

Finally, Section II-E gives the full mathematical description

of our MPC controller by bringing together the results of the

previous sections.

A. Allocation of Capacities

Our algorithm dynamically allocates fractions of the energy

and power capacities of each ESU to either its local service or

to frequency control, as shown in Fig. 1. For each timestep k
and each LAC, Ecap

i and P cap
i are divided into a part that serves

the local service (El
i,k, respectively P l

i,k) and a part that serves

PFC (Epfc

i,k, respectively P pfc

i,k ):

SoC l
i · E

cap
i ≤ El

i,k + Epfc

i,k ≤ SoCu
i · E

cap
i (1)

0 ≤ P l
i,k + P pfc

i,k ≤ P cap
i (2)

where SoC l
i and SoCu

i are lower and upper State-of-Charge

(SoC) limits (enforced to avoid operating areas associated with
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excessive degradation) and P l
i,k and P pfc

i,k represent the absolute

value of the power that can be extracted or injected for the local

service and PFC, respectively (we assume symmetric charge

and discharge power capacities).

As it is impossible to predict the instantaneous energy

and power capacities requested by PFC, we use a statistical

approach to estimate values of Epfc

i,k and P pfc

i,k needed to deliver

a specific amount of PFC, leading to a reformulation of (1). For

this, we assume that an ESU’s SoC is managed via an “offsetting

mechanism” as described in [8]. In the next few paragraphs, we

provide a short summary of this work.

When providing frequency control, ESUs might run out of

energy or become fully charged if the frequency signal is not

zero-mean over a certain time period, and hence no longer be

able to contribute to PFC. A way to solve this problem is to

break the frequency control signal into two parts: i) a fast,

zero-mean signal and ii) a time-dependent offset, as shown in

Fig. 2. The ESU follows the fast, zero-mean signal, while the

opposite of the offset is contracted from other, less-flexible,

but energy-unconstrained resources such as conventional power

plants. Different methods of offset computation can be found

in [8], [11]–[14]. These methods have in common that a part

of P pfc

i,k has to be reserved for the offset (P pfc,off

i,k > 0):

P pfc

i,k = P e-pfc

i,k + P pfc,off

i,k (3)

where P e-pfc

i,k is the power capacity which is effectively available

for PFC (the value that would be communicated to the system

operator). The size of P e-pfc

i,k compared to P pfc

i,k depends on

Epfc

i,k/P
pfc

i,k , the ESU’s characteristics, and the choice of the offset

mechanism.

Ref. [8] analyzed three years of historical frequency data, and

found that an ESU providing PFC with an appropriate offset

mechanism has a narrow SoC distribution centered around

SoCpfc
avg, as shown in Fig. 3. Note that it is very rare for the SOC

to reach SoCpfc
min or SoCpfc

max. For simplicity we assume that the

energy content of the portion of the ESU dedicated to PFC is

SoCpfc
avg · Epfc

i,k at all hourly timesteps (yellow line in Fig. 4),

but that the SoCpfc may vary between SoCpfc
min and SoCpfc

max

within a timestep, due to the frequency profile. To include these

assumptions, we replace (1) with:

SoC l
i · E

cap
i ≤El

i,k + SoCpfc
min · E

pfc

i,k (4)

El
i,k + SoCpfc

max · E
pfc

i,k ≤SoCu
i · E

cap
i (5)

where (4) corresponds in Fig. 4 to the distance between the

green line and the bottom dashed line, and (5) to the distance
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Fig. 3. SoC distribution of an ESU providing PFC with appropriate offsetting
mechanism, from [8].
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Fig. 4. Example of energy and power allocation schedule including SoC

limits, SoC
pfc

min
, SoC

pfc
avg, and SoC

pfc
max. The allocation is the same as in Fig. 1.

The color coding corresponds to that of Fig. 3. When no PFC is provided,

the three color lines converge since E
pfc

i,k
= 0.

between the orange line and the top dashed line. In this paper, we

use values of SoCpfc
min and SoCpfc

max from [8], which are displayed

in Fig. 3, and we set SoC l
i = SoCpfc

min and SoCu
i = SoCpfc

max.

For the local service, El
i,k and P l

i,k represent both how much

capacity (in terms of kWh and kW, respectively) is used by the

local service and how much is reserved for it. In other words, the

optimizer reserves only as much energy or power capacities that

it predicts it will need, which is valid because of our assumption

of perfect forecasts. Therefore, P l
i,k can be expressed as:

P l
i,k = max(ps,i

i,k, p
s,o
i,k) (6)

where ps,i
i,k and ps,o

i,k (both positive) represent the power sent to

and requested from the ESU i by its local service. In a real

implementation including forecast error, one would need to

build in robustness margins.

The partitioning of energy and power capacities can change

at any timestep, as shown in Fig. 1. To represent this, we include

the variable ∆Ei,k which represents a virtual energy transfer

from one service to the other, i.e.

SoCpfc
avg · E

pfc

i,k+1
= ηsd

i

(

SoCpfc
avg · E

pfc

i,k +∆Ei,k

)

(7)

El
i,k+1 = ηsd

i

(

El
i,k +

(

ηc
ip

s,i
i,k −

ps,o
i,k

ηd
i

)

∆t−∆Ei,k

)

(8)

where ∆t represents the timestep duration (one hour). Note

that these energy conservation equations use SoCpfc
avg ·E

pfc

i,k (the

yellow line in Fig. 4), not the min/max values.

B. Physical Constraints, Cost, & Profits

For each LAC, the power balance must be satisfied at all

timesteps:

Li,k − LX
i,k = pg,i

i,k + ps,o
i,k + PVi,k − pg,o

i,k − ps,i
i,k − PV X

i,k (9)
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where Li,k and LX
i,k represent the load profile and load cur-

tailment profile, pg,i

i,k and pg,o

i,k the power consumed from and

exported to the grid, PVi,k and PV X
i,k the PV generation profile

and PV curtailment profile. PV curtailment is not explicitly

penalized, but there is an opportunity cost associated with the

loss of revenues from the feed-in tariff. The load curtailment

penalty CX
i,k is calculated as:

CX
i,k = x · LX

i,k ·∆t (10)

with x being the cost of load curtailment (set to 10e/kWh,

which is in line with [15]). The cost/profit associated with

buying/selling electricity from/to the grid Ce
i,k is computed

assuming that the same tariffs apply to the ESU as to the load

and PV:

Ce
i,k =

(

pg,i

i,k ·g
in
i,k−pg,o

i,k ·g
out
i,k

)

∆t (11)

where gin
i,k and gout

i,k are the purchase and feed-in tariffs. We

assume that the battery degradation cost functionCd
i,k is the sum

of linear and quadratic functions on the battery power profile:

Cd
i,k =

(

dl
i ·(p

s,i
i,k+ps,o

i,k)+dq
i

(ps,i
i,k+ps,o

i,k)
2

Ecap
i

)

∆t (12)

The line constraints are modeled as:

pg,i

i,k ≤ pg,i,max

i,k (13)

pg,o

i,k ≤ pg,o,max

i,k (14)

where pg,i,max

i,k and pg,o,max

i,k are the line limitations.

C. Transformer overheating

The power rating of a transformer can cause a bottleneck

in the grid. The limiting factor is not usually the power rating

itself, but rather the transformer hot spot temperature, which

is related to the load factor profile through a set of thermal

relations considering thermal inertia. An elevated hot spot

temperature shortens the transformer lifetime, and can also

lead to immediate damage if the temperature is above a certain

threshold [16].

To ensure that our MPC algorithm is computationally

tractable, we developed a simplified transformer overheating

model based upon the higher order models of [16] and [17], and

extending the initial work of [18]. Using the numerical values

of distribution transformer model parameters given in [16],

we first found that ∆θh2,k from [17], a system state of the

transformer model, can be neglected. Since we also assume

the transformer load factor Ki,k to be constant over one hourly

timestep, the equation (3) from [17] can be approximated to a

form that does not include dependency on the previous timestep,

and the equation (5) can be simplified as well. These three

simplifications allow us to use an hourly timestep (as opposed

to minute duration time steps in [17]) and lead to the following

equation set:

θh
i,k=θo

i,k+∆θhrK1.6
i,k (15)

θo
i,k=

θo
i,k-1

1.3957
+0.2835





(

1+K2
i,kR

1+R

)0.8

∆θr
o+θαi,k



 (16)

Ki,k=
max(pg,i

i,k,p
g,o

i,k)

Si

(17)

where θh
i,k is the hot spot temperature of the transformer; θo

i,k

its top-oil temperature; θαi (k) the ambient temperature; ∆θhr,

∆θr
o, and R are thermal parameters; and Si is the transformer

rated power.

Equations (15) and (16) are convex but not linear or quadratic,

and so we approximate them with sets of linear equations

that provide piecewise linear lower bounds on Ki,k. We then

penalize Ki,k in the objective function so that it stays on the

lower bound. Tests show that the output of our model and the

model in [17] match well; the outputs do not differ by more

than a few temperature degrees.

Since we want to focus on extreme overloading events,

we penalized the rise of the hot spot temperature only above

160◦C, and since the risk of damage increases rapidly in high

temperature ranges [16], we use a quadratic penalty function:

C t
i,k = ht

i ·
(

max(θh
i,k − 160◦C, 0)

)2
(18)

where C t
i,k is the transformer overheating penalty and ht

i the

cost of transformer overheating.

This transformer model is used within the MPC controller;

however, to represent the real transformer we use the original

formulation from [17] which provides θo2
i,k, a more accurate

transformer top-oil temperature estimate. This introduces plant-

model mismatch. At each iteration of the controller, we set the

initial value of θo
i,k to the corresponding timestep value of the

θo2
i,k profile.

D. Primary Frequency Control Revenues & Costs

Using the results from [8], it is possible to extract the average

hourly operating costs Cpfc

i,k of an ESU providing PFC. These

operating costs consist of the cost of offsetting (i.e. the resource

providing the offset compensation has to be paid) and the

battery usage degradation. These values depend on the ESU

characteristics, Epfc

i,k, and P pfc

i,k . We computed ESU operating

costs over discretized values of Epfc

i,k and P pfc

i,k and found that

these costs are almost a convex function in Epfc

i,k and P pfc

i,k . We

therefore use the set of linear constraints describing the convex

hull to form a piecewise linear lower bound on PFC operating

costs:

Cpfc

i,k ≥ apfc,1
i,j · P pfc

i,k + bpfc,1
i,j · Epfc

i,k ∀ i, j, k (19)

where j indexes the planes constituting the piecewise affine

approximation, and apfc,1
i,j , bpfc,1

i,j ≥ 0∀ i, j. For a given P pfc

i,k , Cpfc

i,k

decreases when Epfc

i,k increases as the offset mechanism needs

to be called less often, leading to lower degradation and smaller

offsetting costs. We can describe the dependency of P e-pfc

i,k on

P pfc

i,k and Epfc

i,k using the same approach:

P e-pfc

i,k ≤ apfc,2
i,j · P pfc

i,k + bpfc,2
i,j · Epfc

i,k ∀ i, j, k (20)

where apfc,2
i,j , bpfc,2

i,j ≥ 0∀ i, j. The ratio P e-pfc

i,k /P pfc

i,k is an in-

creasing function of Epfc

i,k/P
pfc

i,k which tends to one when the

later ratio tends to infinity (i.e. no offset mechanism needed if

Epfc

i,k is infinitely large).
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We define the PFC profit Bpfc

i,k as

Bpfc

i,k = P e-pfc

i,k · rpfc − Cpfc

i,k (21)

where rpfc is the PFC hourly revenue per kW of effective PFC

power capacity.

PFC markets in Europe require participants to provide

constant PFC capacity over the duration of a contract (dpfc

timesteps). Values of dpfc vary from 4h to a week. Therefore,

the ESU aggregator should ensure that the sum of effective PFC

capacities over all LACs remains constant over a PFC contract

duration:
∑

i

P e-pfc

i,k∗ =
∑

i

P e-pfc

i,k∗+k2
∀ k2 ∈ [1, dpfc − 1] (22)

where k∗ represents the beginning of a PFC market interval.

To avoid integer variables in the formulation, we assume that
∑

i P
e-pfc

i,k can take any positive value and we do not include

limits on the minimum power capacity provided.

E. MPC Controller Formulation

The MPC controller solves the following optimization prob-

lem:

min
uk

J(uk, xk) =

N−1
∑

j=0

∑

i

(

CX
i,k+j + Ce

i,k+j

+ Cd
i,k+j + C t

i,k+j −Bpfc

i,k+j

)

+ Tk (23)

subject to (2)-(14), (17)-(22), and approximated versions of (15)

and (16). The control input and system states are

uk = [uk, uk+1, ..., uk+N-1] ≥ 0

uk = [El
k, E

pfc

k , ps,i
k , p

s,o
k , P pfc

k , LX
k , PV X

k ]T

xk = [El
k-1, E

pfc

k-1, θ
o2
k-1]

T ≥ 0 .

The variable N is the MPC optimization horizon and T (k) is

the terminal cost function representing the value of the energy

within the ESUs at the end of the horizon:

Tk=
∑

i

ḡin
i,k·

(

El
i,k+N-1+SoCpfc

avgE
pfc

i,k+N-1

)

. (24)

The input data required by (23) are the load, PV, and temper-

ature forecasts, and electricity tariffs. The optimal allocation

schedule over the next ku timesteps (control update rate) is

applied to the ESUs and the process is repeated every ku

timesteps until the end of the simulation time.

III. CASE STUDY DEFINITIONS

To demonstrate the behavior of our algorithm and highlight

the importance of aggregation and PFC contract duration, we

conduct two case studies. Both use four LACs, described in

Table I, and the parameter values from Table II. We set the

values in Table I to represent a situation where, in the absence of

ESUs, each LAC faces a grid bottleneck during periods of either

high load or high PV generation. Specifically, without ESUs,

our simulations lead to 0.2% of load consumption curtailment

for LAC 3, 18% of PV production curtailment for LACs 1 and

2, and to the hot spot temperature of the LAC 4 transformer

reaching almost 240◦C. The ratings of the ESUs were set large

enough to alleviate these bottlenecks, but we did not optimize

over the ratings.

We use load and PV profiles covering 18 weeks – July to

November 2012. LAC 1’s load profile and all PV profiles come

from measurements taken on a Swiss low voltage grid. LAC

2’s load profile is a downscaled Switzerland-wide consumption

profile (ENTSO-E data). The load profiles of LACs 3 and 4

come from synthetic residential and commercial profiles from

Bavaria [19]. We added Brownian motion and white Gausian

noise to the load profiles of LACs 2-4 to represent the increased

variance of a small number of customers compared to that of

the aggregate/average. We scaled the noise profiles so that they

constitute up to about one fourth of the load profiles.

We use the electricity tariffs of residential and small commer-

cial buildings from four Swiss providers. All the tariffs display

the same general time-of-use structure: on-peak tariff from the

morning to the evening Monday through Friday (sometimes as

well during some hours on Saturday), and off-peak tariff the

rest of the time. We modeled the feed-in tariff as half the retail

rate for the corresponding time and LAC. The ratio gin
i,k/g

out
i,k

approximately corresponds to the situation in Germany for new

PV installations. To highlight the behavior of the algorithm,

we set the battery degradation costs to lower values than what

would be realistic today. Similarly, the transformer overheating

cost was set to dissuade overheating.

We assume that we have perfect load and PV forecasts

over N timesteps. Since our forecasts have limited horizons,

we primarily use MPC to handle the new (perfect) forecasts

that become available throughout the simulation period (in

addition to transformer plant-model mismatch as described

in Section II-C). Therefore, the results presented here con-

stitute approximate upper bounds on the revenue achievable

via aggregation and multitasking given the parameter values in

Table I. More generally, the value of our case studies lies in the

qualitative comparisons, not the quantitative results.

The first case study focuses on the additional profits gen-

erated by multitasking. We compare the total optimization

objective value of four scenarios:

• Scenario O (base case): We assume no ESUs are installed.

The objective function is therefore penalized by PV and load

curtailment as well as transformer overheating.

• Scenario L (local services only): The ESUs are installed but

only provide their local services.

• Scenario D (local services and PFC): We assume the

ESUs provide PFC (with a four-hour contract duration) in

addition to their local services. This case corresponds to the

framework detailed in the previous sections.

• Scenario D2 (local services and PFC – different batteries):

We assume two identical sets of ESUs (each identical to the

set used in scenarios L and D). One set provides only local

services to the four LACs, while the other set is installed in

a location not facing a bottleneck and provides only PFC.

Comparing the results of the last two scenarios tells us whether
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TABLE I
LAC PARAMETERS

LAC 1: PV-l 2: PV-t 3: Load-l 4: Load-t

Energy capacity E
cap
i

[kWh]
800 900 600 600

Power capacity P
cap
i [kW] 150 200 180 150

Linear ESU degradation
costs dl

i [e/kWh]
0.03 0.05 0.10 0.10

Quadratic ESU degradation
costs d

q
i [e/kW]

0.10 0.07 0.20 0.20

Min; Max;
Mean load [kW]

144; 459;
288

150; 385;
264

53; 619;
269

72; 716;
300

PV rated power [kW] 1640 1760 - -

On-; Off-peak rate
[e/kWh]

0.161;
0.116

0.188;
0.105

0.185;
0.107

0.196;
0.123

Transformer rated power
Si [kW]

- 350 - 300

Transformer overheating
cost ht

i [e/kW2]
- 0.05 - 0.05

Line limitations
p

g,i,max
i ; p

g,o,max
i [kW]

-;450 -;- 470;- -;-

TABLE II
SIMULATION PARAMETERS

Variables Values

Timestep duration ∆t [hours] 1

Control update rate ku [timesteps] 168

MPC optimization horizon N [timesteps] 240

PFC hourly revenue rpfc [e/(kW·h)] 0.016*

*current Swiss and German market price.

the simultaneous provision of local and grid services leads to a

significant reduction in the quality of either service.

The second case study focuses on the importance of ag-

gregation and establishes the relationship between aggregation

and PFC contract duration. The following four scenarios are

analyzed:

• Scenario A: This scenario is the most conservative. We

assume a weekly PFC contract duration (which is the current

regulation in Germany and Switzerland) and aggregation of

ESUs is not allowed. Hence, each unit is operated inde-

pendently and must provide a constant effective PFC power

capacity. In this case, the summation signs of (22) disappear,

and this equation is enforced separately for each LAC.

• Scenario B: We still assume a weekly PFC contract duration,

but aggregation of ESUs is allowed, i.e. (22) applies. Hence,

only the sum of the P e-pfc

i,k profiles is a commitment, and not

the PFC schedule of each ESU.

• Scenario C: This scenario represents a much more flexible

PFC market, with four-hour contract durations (which is

the current regulation in Denmark), but aggregation is not

allowed, as in Scenario A.

• Scenario D: This scenario is the same as the scenario D

from the first case study. It represents the most innovative

scenario, combining the improvements of Scenarios B and

C: four-hour PFC contract duration and aggregation of ESUs.

TABLE III
RESULTS OF FIRST CASE STUDY. ALL VALUES ARE IN Ke.

Scenario O L D D2

Ce 351 340 343 340 + 0

Cd 0 11 8 11 + 0

CX 13 0 0 0 + 0

C t 15 2 2 2 + 0

−Bpfc 0 0 -18 0 + -21

Objective Value 380 352 335 331

IV. RESULTS

Table III shows the results of the first case study. The values

in the first four rows are the sums of the objective value

components over the LACs and the simulation period. For D2,

the values on each side of the + sign correspond to the different

ESU sets. The table shows that scenario D leads to a gain

of 17ke compared to scenario L. This gain comes from the

provision of PFC in addition to the local services. It also shows

that the difference between scenarios D and D2 is only 4ke ,

which means that there is little conflict between PFC and the

local services. Since the battery investment cost in scenario D2

is exactly twice the one in scenario D, this result is a strong

argument for multitasking.

Table IV shows the results of the second case study. The

additional benefit of aggregation is bigger when considering

weekly PFC contract durations (2.0ke from scenario A to

B) than when considering four-hour contract durations (0.3ke

from C to D). This is because the shorter the PFC contract, the

lesser the impact of the needs of the local service on the optimal

PFC schedule. By extrapolation, using one-hour PFC contract

duration would result in no difference between aggregation and

no aggregation, since (22) would be trivially satisfied. It also

shows that a four-hour PFC market, whose implementation is

the system operator’s responsibility, leads to better results than

an aggregation scheme, whose implementation is the respon-

sibility of the aggregator, under a weekly PFC market. The

importance of a short PFC contract duration for multitasking

was also highlighted in [3].

The results show that even the most conservative scenario

(A) already achieves a significant portion of the improvement

of the most advanced scenario (D), i.e. the difference between

scenarios D and A (3.7ke) is more than three times smaller than

the difference between scenarios A and L (13.6ke). The small

difference between scenarios D and A comes from the fact that

we selected local services that are not often requested (but that

provide a high revenue per kWh cycled). Performing the same

analysis with ESUs whose local applications run more often

(such as electric vehicle batteries or thermostatically controlled

loads) would likely lead to a different result. Specifically,

aggregation would be critical to ensure a constant availability

of PFC power capacity over some hours.

When analyzing the results of Tables III and IV, one should

keep in mind that the biggest component of the operating costs

is the cost of energy exchange with the grid (Ce), on which

the ESUs have only limited influence. This explains why the

difference between scenarios might seem small when expressed
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Fig. 5. Illustration of how the central controller allocates capacities in order
to provide constant PFC capacity over a PFC contract duration, Scenario B.
The top and middle plots display energy capacity allocation for LACs 3 and 4.
The energy allocation of LAC 1 and 2 is omitted here since it does not bring
additional information because their local services were barely requested. The
bottom plot shows the individual contribution of each LAC to the cumulative
PFC power capacity.

TABLE IV
RESULTS OF THE SECOND CASE STUDY. ALL VALUES ARE IN Ke.

Scenario A B C D

Objective Value 338.4 336.4 334.9 334.7

in % of the operating costs of scenario O.

Figure 5 shows how the central scheduler dispatches the four

LACs in scenario B to ensure constant PFC power capacity over

a week. Since LACs 3 and 4 face demand for their local services

at a specific time during this week, the optimal cumulative

effective PFC power capacity is only 530kW for the whole

week, whereas it climbs to 610kW for weeks with less request

from local services.

V. CONCLUSION

We have presented an algorithm that co-optimizes simul-

taneous provision of local and power system services by an

aggregation of energy storage units. We showed that multitask-

ing can increase the profitability of batteries in power systems,

especially if their local services are related to overloading and

are requested rarely. In such cases, we find that the profits

generated by a battery set providing both local and system

services are almost equal to the sum of the profits from two

identical battery sets, where one provides only the local service

and the other only the system service. We also found that the

importance of aggregation decreases when the PFC contract

duration decreases. Finally, we showed that improvements

generated by multitasking are significantly greater than im-

provements resulting from shorter PFC contract duration or

from ESUs aggregation for PFC provision.

Future research includes extending our framework to con-

sider other kinds of resources as well as the impact of prediction

uncertainty and stochasticity. The present work was performed

assuming perfect forecasts over the optimization horizon, and

we expect the importance of aggregation will increase if we

consider uncertainty, as aggregation will reduce the noise on the

prediction. Furthermore, we will conduct sensitivity analyses to

assess the importance of specific parameters, especially battery

degradation costs.
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