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Abstract—This paper presents a Photovoltaic (PV) power
conversion model and a forecasting approach which uses spatial
dependency of variables along with their temporal information.
The power produced by a PV plant is forecasted by a PV
conversion model using the predictions of three weather variables,
namely, irradiance on the tilted plane, ambient temperature, and
wind speed. The predictions are accomplished using a spatio-
temporal algorithm that exploits the sparsity of correlations
between time series data of different meteorological stations in
the same region. The performances of the forecasting algorithm
as well as the PV conversion model are investigated using real
data recorded at various locations in Italy. The comparisons
with various benchmark methods show the effectiveness of the
proposed approaches over short-term forecasts.

Index Terms—Forecasting; Solar irradiance; Distributed gen-
eration; Correlated data; Time series.

I. INTRODUCTION

Integration of renewable energy sources into the power

grid is greatly facilitated by high-accuracy forecasts. Using

historical data of a variable in a prediction model can gen-

erally provide a reasonable forecast accuracy [1]. In order

to further improve the forecast performance, however, spatial

information can also be used in addition to the temporal data.

High correlations between the weather variables such as solar

irradiance, temperature and wind speed among neighboring

sites mostly can help improve the forecast accuracy. However,

incorporating various time series data over a large number

of meteorological stations is generally challenging due to the
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overfitting problems and computational costs. Therefore, the

optimum amount of data to be included in the forecasting

process without affecting the prediction performance has to

be determined by using advanced algorithms.

Recently, there has been an increasing number of studies us-

ing spatial information in solar forecasting methods. Dambre-

ville et al. [2] propose an Autoregressive (AR) approach

to predict the global horizontal irradiance by using spatio-

temporal information. Another time series model, an Auto

Regressive with eXternal input (ARX) model, is proposed

for solar PV power forecast depending on correlated power

information from different stations [3]. A Neural Network

(NN) approach based on spatio-temporal information is em-

ployed by Licciardi et al. [4] for global horizontal irradiance

forecasts, where also Principal Component Analysis (PCA)

is used to decrease the computational load. Agoua et al. [5]

use distributed power plants as sensors in a spatio-temporal

approach by only taking the production data into account.

Besides, spatio-temporal forecasting methods based on vector

autoregression are presented for solar power forecasts [6] and

very short term wind power forecasts [7], by considering the

past observations only from the related variable, i.e, solar

power data and wind power data, respectively. A more detailed

survey of solar irradiance forecasting approaches based on

spatial and temporal information can be found in [8] and [9].

Considering the promising results presented, this paper

proposes a forecasting scheme which uses both spatial and

temporal time series data. The proposed spatio-temporal fore-

casting algorithm incorporates the time series data of a target

meteorological station and its surrounding stations. Assuming

that there usually exists a sparse relational pattern among

the correlations between the time series of relatively close

meteorological stations (i.e., only a few stations have a strong

correlation with the target station among a set of stations),

we study how to determine such low-dimensional structures



and then using them in forecasting in order to improve the

accuracy while decreasing the computational burden. With

this objective, first, we show that under the assumption of

sparsity of the interconnections, there is a distinct structure

to the solution x. It is assumed that a coefficient vector x

has very few non-zero entries, and these entries are clustered

in few certain locations. The number of blocks in this block-

sparse coefficient vector corresponds to the number of links

(i.e., stations) contributing to the target station output.

Using the proposed model structure, called Compressive

Spatio-Temporal Forecasting (CSTF), as it is inspired by Com-

pressive Sensing (CS) and structured-sparse recovery [10],

[11], the forecasts are performed for three different weather

variables, namely, irradiance on the tilted plane, ambient tem-

perature and wind speed. The forecast values are then applied

to a PV power conversion model [12] in order to estimate the

output power produced by a PV plant. It is also to be noted that

various exogenous variables are incorporated in forecasting, by

determining the variable type with a cross-correlation analysis

between the variables. For instance, temperature and humidity

values are used for irradiance forecasts while temperature,

pressure and wind direction series are included in wind speed

forecasts. The performance of both the PV conversion model

and the spatio-temporal algorithm are evaluated on a yearly ba-

sis using high-resolution real data recorded in various locations

in Italy and the results are compared to a set of widely-used

temporal and spatio-temporal benchmark models.

The remainder of the paper is organized as follows: Sec-

tion II presents the PV system and PV conversion model. In

Section III, the proposed forecasting algorithm is introduced

in Section IV. The comparisons with the real data and with

the other benchmark methods are given in Section V. The last

section contains the conclusion.

II. ELECTRIC POWER EVALUATION

For the calculations reported in this paper, data are taken

from a meteorological station installed in a grid-connected PV

system located in Southern Italy. The plant is facing South

and the tilt angle of the poly-crystalline silicon modules is

30◦. With a peak power of 993.6 kWp, the plant utilizes

two centralized transformerless inverters, slightly undersized

with respect to the rated peak power, given that the 500-kVA
inverter is supplied by a 552 kWp array and the 400-kVA
inverter is supplied by a 441.6 kWp array, respectively. A

complete description of the system is reported in [13].

In order to link the solar irradiance and the cell temperature

data with the AC power delivered to the grid, a dedicated

PV conversion model is defined. The available power in the

maximum power point Pmpp, is achieved by:

Pmpp = Prated ·(Gtcell −Glim)·ηdirt ·ηrefl ·ηth ·ηmism ·ηcable
(1)

where:

• Prated is the rated (a.k.a. peak) power of the real grid-

connected PV system at Standard Test Conditions (STC);

• Glim is the irradiance limit below which the output is

vanishing;

• Gtcell is the global irradiance of a 30◦ tilted reference

solar cell;

• ηdirt is the efficiency due to soiling and dirt losses, the

corresponding value used is in the range 0.97 - 0.98;

• ηrefl is the efficiency due to the reflection of the PV

module glass, the corresponding value used is taken from

the PVGIS website and equal to 0.971 [14];

• ηth is the efficiency due to the thermal losses ℓth with

respect to the STC, calculated as a function of the thermal

coefficient of maximum power of the modules γth, which

depends on the PV technology, and the cell temperature

TC , which can be calculated as:

TC = Tamb + (NOCT − 20◦) ·Gtcell/0.8kW/m2 (2)

where Tamb is the ambient temperature and NOCT is the

Normal Operating Cell Temperature in outdoor operation

(GNOCT = 800 W/m2 and Tamb = 20◦C), whose value

is in the range 42-50◦C) [15].

• ηmism is the efficiency that takes into account the I-

V mismatch losses assuming that the bottleneck effect

globally leads to 97% of the power rating declared by

the manufacturer for all the PV modules in the PV array.

This loss is a consequence of the weakest modules in the

series connection inside the strings and of the weakest

strings in the parallel connection inside the PV array [16];

• ηcable is the efficiency that includes the DC cable losses

with value 0.99, according to good design criteria [17].

Finally, considering the efficiency of the maximum power

point tracker, ηMPPT , and thanks to the power conditioning

unit model for grid connection, the AC power injected into

the grid is calculated as [18]:

PDC = ηMPPT · Pmpp (3)

PAC = PDC −
(
P0 + cQ · P 2

AC

)
(4)

where P0 is the no-load power losses along the operation

(equal to 0.21% of the 552 kWp AC rated power and 0.23%

of the 441.6 kWp AC rated power) and cQ is the quadratic

loss coefficients (with cQP
2
AC equal to 1.9% of the 552 kWp

AC rated power and 1.8% of the 441.6 kWp AC rated power).

For above calculations, Tamb and Gtcell are taken from the

forecasts and used to determine the AC power PAC .

III. MULTIVARIATE AUTOREGRESSIVE (M-AR) MODEL

We use M-AR models to represent the interactions between

time series data of different stations as follows:

y(t) = X1y(t− 1) + · · ·+Xny(t− n) + e(t)

=

n∑

j=1

Xjy(t− j) + e(t),
(5)

where y(t) ∈ R
P contains output measurements (e.g., irra-

diance values at P meteorological stations) at time t, Xj ∈
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R
P×P is a coefficient matrix associated with the j-th time lag,

n is the model order and e(t) is a Gaussian noise.

Let’s assume that data is obtained from V weather variables

(v = 1, 2, . . . , V ) recorded at S locations (s = 1, 2, . . . , S).

Define ys,vt as the measured value of the v-th variable at the

s-th location at sample time t (t = 1, 2, . . . ,M + n). For the

target variable ys
∗,v∗

, the M-AR model (5) can be expressed in

a matrix-vector product format as in (6), where N := nP and

P := V × S. In the training phase, the goal is to determine a

coefficient vector x ∈ R
N that best explains the observations

b ∈ R
M and A ∈ R

M×N . As seen from (6), the coefficients

belonging to each variable appear in one vector-block.

IV. COMPRESSIVE SPATIO-TEMPORAL FORECASTING

The proposed forecasting structure depends on the assump-

tion that only a few meteorological stations have a strong

correlation with the target station among a set of stations.

Under this assumption, there will be a distinct structure to

the solution x. In particular, a typical x will have very few

non-zero entries clustered in few locations. Such vectors are

called block-sparse. Each block represents a link contributing

to the output of the target station. For a given target meteoro-

logical station, we solve the minimization:

min
x

‖b−Ax‖2 subject to (x is block-sparse). (7)

We use tools from CS for solving (7).

A. Uniform CSTF

Definition 1 (Block K-Sparse Signal): Let x ∈ R
N be a

concatenation of P vector-blocks xi ∈ R
n, i.e.,

x = [xtr
1 · · ·x

tr
i · · ·x

tr
P ]

tr, (8)

where N = nP . A signal x ∈ R
N is called block K-sparse

if it has K < P non-zero blocks. �

Among different algorithms for block-sparse recovery, we

use the Block Orthogonal Matching Pursuit (BOMP) algo-

rithm [19] due to its flexibility in recovering block-sparse

signals of different sparsity levels and its low computation

complexity [20]. For more details on BOMP, see [21].

B. Nonuniform CSTF

In a uniform CSTF, the assumption is that a uniform M-AR

model as given in (6) is governing the interactions between

meteorological stations. In other words, we assume that the

target station and its surrounding stations are related by AR

models of the same order. In this section, we consider a more

generalized version of the CSTF algorithm where the target

station and its surrounding stations are related by AR models

of different orders. This model structure, called Nonuniform

Multivariate Autoregressive (NM-AR), distinguishes between

the stations with high and low cross-correlation with the target

station. Let ni be the order associated with the i-th station for

i = 1, 2, . . . , P . An NM-AR version of (6) can be considered

as given in (9), where nmax ≥ maxi ni and N :=
∑P

i=1
ni.

This model structure results in a nonuniform block-sparse

vector x whose blocks have different length.

Definition 2 (Nonuniform Block K-Sparse Signal): Let x ∈
R

N as a concatenation of P vector-blocks xi ∈ R
ni where

N =
∑P

i=1
ni. A signal x ∈ R

N is called nonuniform block

K-sparse if it has K < P non-zero blocks. �

Given {ni}
P
i=1, the BOMP Algorithm can be used for

recovery of x with Ai ∈ R
M×ni . In order to find the set

of order {ni}
P
i=1, we use a correlation analysis in which the

correlation coefficients for the consecutive time lags up to the

prediction horizon between the target and other stations are

calculated. We adjust the orders to achieve the best prediction

performance based on the calculated correlation coefficients.

V. CASE STUDY OF FIVE STATIONS IN ITALY

The variables Gtcell, Tamb, and ws measured at five mete-

orological stations in Italy are used in the the proposed CSTF

algorithm. These stations face high solar irradiance values

during a large part of the year and hence, are good candidates

for our case studies. Furthermore, these stations are located

in a relatively small region, as shown in Fig. 1, making them

attractive candidates for correlated data analysis.

A. Data Description

Data averaged each 10 min from five meteorological stations

in Italy including Ga1, Ga2, Gi, Ma and Ru are used in
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Figure 1. Map of the five PV plants.

the study. To clearly observe the forecasting performance, the

variables Gtcell, Tamb and ws belonging to the target station Gi

are forecasted separately for two representative time periods;

first week of February and the first week of July. For each

period, periods of 14 and 7 days from previous months (i.e.,

January and June) are also considered as training and model

selection subsets, respectively. The results are presented in the

related figures and tables for only the irradiance data due

to several reasons: (i) similar forecasting performances for

the variables cause data redundancy, (ii) solar irradiance is

the most influencing variable on the power calculations and,

(iii) directly providing power forecasts instead of irradiance

forecasts does not allow to make fair comparisons with the

forecasting methods in the literature since power forecasts in

this study include the contributions of different variables on

the accuracy and also the errors coming from the forecasts of

these variables and the model itself.

The main descriptive statistics belonging to irradiance val-

ues in the selected representative weeks are given in Ta-

ble I. The highly volatile data characteristics in these periods,

complicates the forecasting task, allowing the performance of

proposed model to be tested at the worst conditions.

B. Comparison with Other Benchmark Algorithms

The proposed algorithm is compared with a set of fore-

casting approaches for two periods of seven consecutive days

TABLE I. STATISTICAL PARAMETERS OF THE DATA USED IN THE TEST

PERIODS.

Period
Mean Median Standard Deviation

[W/m2] [W/m2] [W/m2]

February 1-7 69.82 0.00 355.71
July 1-7 293.69 74.34 142.75

with one hour-ahead (i.e. six 10-min-ahead) updates. First, a

persistence model is considered due to its high performance

in short-term forecasts. The persistence model uses the last

measured value for the prediction of the next six time steps.

Then an AR model is employed. As seen in Figs. 2 and 3, the

AR model outperforms the persistence model.

A combination method consisting of Wavelet Transform

(WT) and Artificial Neural Network (ANN) [22] is also used

for comparison. In this model, briefly, the solar irradiance on

tilted plane data is decomposed by the WT into three subseries

at various frequency bands and each subseries is forecasted

separately using ANN before an aggregation process. The

final forecast, shown in Fig. 4, outperforms the AR model

due to ANN’s capability of capturing the existing nonlinearity.

Decomposition models are in general proved to improve the

forecasting accuracy [23]. In addition to the temporal methods,

a Least Squares (LS) M-AR spatio-temporal forecasting model

is employed. Fig. 5 shows the improved forecasting results.

C. Nonuniform CSTF

Lastly, the proposed nonuniform CSTF algorithm is applied

to the considered data set. As indicated before, the simulations

are carried out for a prediction time horizon of one hour,

hence a new coefficient vector x is calculated every one hour,

i.e. every six 10-min time steps. In the forecasting stage, a

recursive approach is adopted. In other words, the forecasts at

time n+M+1 for all meteorological stations (ŷin+M+1
, ∀i) are

included in the A matrix for forecasting the solar irradiance at

time n+M+2 (ŷin+M+2
, ∀i) and so on. This process continues

for six time steps and the elements of A matrix are updated

with measured values for each prediction time horizon.
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Figure 2. Persistence forecasting of two data sets.
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Figure 3. AR forecasting of two data sets.

As depicted in Fig. 6, substantially improved forecasting

accuracy for two considered data sets are achieved compared

to both temporal and spatio-temporal methods. In Table II,

averaged Mean Absolute Error (MAE), Root Mean Squared
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Figure 4. WT-ANN forecasting of two data sets.
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Figure 5. LS M-AR forecasting of two data sets.

Error (RMSE) and Normalized Root Mean Squared Error

(NRMSE) metrics are provided for a comparison between

the methods considered in this study for both weeks. The

proposed nonuniform CSTF algorithm outperforms the other
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Figure 6. Nonuniform CSTF forecasting of two data sets.

approaches with respect to all error metrics. Considering the

NRMSE values as an example, the proposed approach enables

a reduction of 14.20% and 6.04% as compared to the WT-

ANN and LS-based ST, respectively.

TABLE II. STATISTICAL ERROR MEASURE COMPARISON OF DIFFERENT

METHODS

Forecasting approach
MAE RMSE NRMSE

[W/m2] [W/m2] [%]

Persistence Forecasting 53.28 110.59 9.32
AR 31.54 89.97 7.58
WT-ANN 21.68 75.26 6.34
LS-based ST 19.22 68.72 5.79
Nonuniform CSTF 18.48 64.56 5.44

Note that the exogenous variables are included in the

proposed model structure. The weather variables, temperature,

and humidity are incorporated for solar irradiance forecasts to

benefit from the high correlations between solar irradiance and

these variables. Besides, irradiance, humidity, and wind direc-

tion are included in temperature forecasts, and temperature and

wind direction are used for wind speed forecasts. The type and

order of the variables to be incorporated as inputs are chosen

by examining the cross-correlations between the variables.

D. PV Power Predictions

In order to estimate the solar power values, the variables am-

bient temperature and wind speed are also predicted with the

modified CSTF algorithm, as illustrated in Figs. 7 and 8. The

averaged NRMSE values of 4.42% and 9.69% are obtained
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Figure 7. Nonuniform CSTF forecasting of two temperature data sets.
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Figure 8. Nonuniform CSTF forecasting of two wind speed data sets.

for temperature and wind speed, respectively. Eventually, the

output power produced by the PV plant is calculated by

applying all the forecasted data to the power conversion model.

Thanks to the proposed forecasting and power conversion
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Figure 9. Nonuniform CSTF forecasting of two power data sets.

models, the results that are mostly consistent with the real

data are accomplished as seen in Fig. 9. The calculated error

measures for the power forecasts, an RMSE of 45.95 kW and

a NRMSE of 5.79%, confirm the effectiveness of the proposed

models. It is to be emphasized again that the superiority of the

models mainly comes from exploiting all available data in an

effective and computationally efficient way. It is also noted

that the computational time of the proposed model is almost

negligible, which is about 0.2 seconds for each 6 steps in the

MATLAB environment on a standard desktop computer.

VI. CONCLUSION

A spatio-temporal solar power forecasting approach and

a PV power conversion model are proposed in this paper.

First the short-term forecasts of different weather variables are

achieved with high accuracy using the proposed forecasting

strategy that incorporates the time series data of both a target

meteorological station and its surrounding stations. The PV

power conversion model uses these forecasts to calculate the

estimated output power produced by a PV plant. Compared

to a set of benchmark models, the lowest error metrics are

obtained for the proposed approach proving its efficiency in

short-term forecasting. The power forecasts also validate the

modeling accuracy of the PV power conversion model.
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