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Abstract – Robust solving of critical large power flow cases (with 

50k or greater buses) forms the backbone of planning and 

operation of any large connected power grid. At present, reliable 

convergence with applications of existing power flow tools to large 

power systems is contingent upon a good initial guess for the 

system state. To enable robust convergence for large scale systems 

starting with an arbitrary initial guess, we extend our equivalent 

circuit formulation for power flow analysis to include a novel 

continuation method based on transmission line (‘Tx’) stepping. 

While various continuation methods have been proposed for use 

with the traditional ‘PQV’ power flow formulation, these 

methods have either failed to completely solve the problem or 

have resulted in convergence to a low voltage solution. The 

proposed “Tx Stepping” method in this paper demonstrates 

robust convergence to the high voltage solution from an arbitrary 

initial guess. Example systems, including 75k+ bus test cases 

representing different loading and operating conditions for 

Eastern Interconnection of the U.S. power grid, are solved from 

arbitrary initial guesses. 

Index Terms— continuation methods/homotopy, equivalent 

circuit formulation, power flow, robust convergence, Tx Stepping 

I. INTRODUCTION  

An accurate solution to the power flow problem is essential 

for secure operation and planning of the power grid. The 

industry standard for solving the power flow problem is based 

on the ‘PQV’ formulation [1], wherein nonlinear power 

mismatch equations are solved for bus voltage magnitude and 

angle state variables that define the steady-state operating 

point of the system. However, this formulation is characterized 

by highly nonlinear power balance equations that are known to 

suffer from lack of robustness [2], particularly with the 

increase in the scale of the system. Of the many known 

challenges contributing toward lack of robustness, the two that 

are the most detrimental are: i) convergence to non-physical 

solution [3] and ii) divergence [2].  

The factors that are the most fundamental toward making 

the power flow problem challenging are i) the use of non-

physical representations for modeling the power grid 

components and ii) the use of power mismatch equations with 

real and reactive power as system state variables to formulate 

the problem. The non-physical models, such as the PV model 

for the generator, can result in convergence to a non-physical 

solution or divergence. Similarly, non-linearities in the ‘PQV’ 

formulation almost always cause divergence for large (>50k) 

and ill-conditioned test cases when solved using an arbitrary 

(e.g. flat start) set of initial conditions. This lack of a physics 

based formulation along with methods that can constrain the 

non-physics based models in their physical space is what 

renders the existing power flow problem and solution 

approaches to be “non-robust”.  

To develop a robust power flow solver, it is imperative that 

the solver can efficiently and effectively navigate through 

these challenges while converging to a solution that is both 

meaningful and correct. We define a solution as being the 

“correct physical solution” if the system voltages are within 

the acceptable range and the angle differences between 

connected adjacent nodes are less than 90°. To achieve this we 

propose a two pronged approach: i) the use of equivalent 

circuit formulation with true state variables of currents and 

voltages [4]-[6] to model the grid and ii) the use of circuit 

simulation methods to ensure robust convergence to correct 

physical solutions. In [7], we showed that with the use of 

circuit simulation methods applied to an equivalent circuit of 

the considered power grid, we can robustly converge for test 

cases up to 15k buses to correct physical solution from 

arbitrary initial guesses.  However, for large power flow cases 

(> 50k+ buses) with complex models (such as remote voltage 

control, FACTS devices etc.), more extensive management of 

convergence is sometimes required. 

In this paper, we propose a homotopy continuation method 

that we refer to as “Tx Stepping” to achieve robust 

convergence for large scale power flow cases from a set of 

arbitrary initial guesses. Homotopy methods have been 

previously studied for the power flow problem [2], [8] but have 

mostly been unsuccessful due to convergence to low voltage 

solutions or their inability to scale to large cases [9]. Tx 

stepping is based on the physics of the grid and takes 

inspiration from the “gmin stepping” method in the circuit 

simulation domain. In the gmin stepping method, all the nodes 

in the circuit model are initially shunted/shorted to ground such 

that a trivial solution to the problem exists. Analogously, in the 



proposed Tx stepping method for power systems, we “virtually 

short” the transmission lines and transformers in order to 

obtain a trivial initial solution. The system is then gradually 

relaxed until the original problem is solved. Furthermore, the 

method also modifies the problem such that the non-linearities 

due to remote voltage control, phase shifters etc., are all 

relaxed initially such that a trivial solution exists for the 

problem independent of its size. 

The remainder of the paper is structured as follows, In 

Section II we provide a brief background of equivalent circuit 

formulation and previously proposed circuit simulation 

methods for the power flow problem. Sections III and IV 

discuss the homotopy methods and the novel Tx stepping 

method in detail. The implementation of the Tx stepping 

method in equivalent circuit formulation and the subsequent 

advantages of the approach are discussed in Section V. In the 

result section, we introduce our solver SUGAR (Simulation 

with Unified Grid Analyses and Renewables) and apply the Tx 

stepping method to multiple large test systems with 75k+ 

nodes and demonstrate robust convergence to correct physical 

solutions from a set of arbitrary initial guesses with no prior 

knowledge of the system state.  

II. BACKGROUND 

A. Equivalent Circuit Formulation 

The equivalent circuit approach for generalized modeling 
of the power system in steady-state (i.e. power flow and three-
phase power flow) was recently introduced in [4]-[6]. This 
circuit-based formulation represents both the transmission and 
distribution power grid in terms of equivalent circuit elements. 
It was shown that each of the power system components 
(including constant power models, i.e. PQ and PV buses) can 
be directly mapped to an equivalent circuit model based on the 
underlying relationship between current and voltage state 
variables without loss of generality. Importantly, this 
formulation can represent any physics based load model or 
measurement based semi-empirical models as a sub-circuit that 
can then be combined hierarchically with other circuit 
abstractions to build larger aggregated models. The equivalent 
circuit representations of the most prominent models for the 
power flow problem are summarized in the following sections. 

1) PV Bus 

The equivalent circuit formulation provides a choice to 

model the constant voltage (PV) node as either a complex 

voltage source (as functions of complex current) [5] or a 

complex current source (as functions of complex voltage) [4]. 

It has been shown that representing the PV bus as a complex 

current source offers superior convergence when applying 

Newton-Raphson (NR) iterations to the resulting equation 

system. To enable the application of NR, the complex current 

source is split into real and imaginary current sources (𝐼𝑅𝐺  

and 𝐼𝐼𝐺, respectively). This is necessary due to the non-

analyticity of complex conjugate functions [4]. The resulting 

equations are: 

𝐼𝑅𝐺 =
𝑃𝐺𝑉𝑅𝐺 + 𝑄𝐺𝑉𝐼𝐺

𝑉𝑅𝐺
2 + 𝑉𝐼𝐺

2  (1) 

𝐼𝐼𝐺 =
𝑃𝐺𝑉𝐼𝐺 − 𝑄𝐺𝑉𝑅𝐺

𝑉𝑅𝐺
2 + 𝑉𝐼𝐺

2  (2) 

An additional constraint that allows the generator to control 

the voltage magnitude either at its own node or any other 

remote node in the system is represented by a control circuit, 

as shown in the following subsection. The reactive power  𝑄𝐺 

of the generator acts as the additional unknown variable for the 

additional constraint that is introduced due to voltage control. 

The first order terms of the Taylor expansions for (1) and (2) 

are used to linearize the functions and derive an equivalent 

circuit model, as shown in Fig. 1. For example, linearization of 

the real generator current is: 

𝐼𝑅𝐺
𝑘+1 =

𝜕𝐼𝑅𝐺

𝜕𝑄𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑄𝐺
𝑘+1) +  

𝜕𝐼𝑅𝐺

𝜕𝑉𝑅𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝑅𝐺
𝑘+1) 

+
𝜕𝐼𝑅𝐺

𝜕𝑉𝐼𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝐼𝐺
𝑘+1) + 𝐼𝑅𝐺

𝑘  −  
𝜕𝐼𝑅𝐺

𝜕𝑄𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑄𝐺
𝑘) 

− 
𝜕𝐼𝑅𝐺

𝜕𝑉𝑅𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝑅𝐺
𝑘 ) −

𝜕𝐼𝑅𝐺

𝜕𝑉𝐼𝐺

|
𝑄𝐺

𝑘,𝑉𝑅𝐺
𝑘 ,𝑉𝐼𝐺

𝑘 (𝑉𝐼𝐺
𝑘 ) 

(3) 

The first term in (3) represents a current source that is a 

function of the reactive power; the second term represents a 

conductance, since the real current is proportional to the real 

voltage; the third term represents a voltage-controlled current 

source, since the real current is proportional to the imaginary 

voltage. The remaining terms are all dependent on known 

values from the previous iteration, so they can be lumped 

together and represented as an independent current source.  

 
Figure 1: Equivalent Circuit Model for PV generator model. 

2) Voltage Regulation of the Bus 

Numerous power grid elements such as generators, FACTS 

devices, transformers, shunts etc., are capable of controlling a 

voltage magnitude at a given node in the system. Moreover, 

they can control the voltage magnitude at either their own node 

𝒪 or a remote node 𝒲 in the system. In equivalent circuit 

formulation, we represent the control of the voltage magnitude 

by a control circuit (Fig. 2) governed by  

𝐹𝒲 ≡ 𝑉𝑠𝑒𝑡
2 − 𝑉𝑅𝒲 

2 − 𝑉𝐼𝒲 
2 = 0 (4) 

The circuit in Fig. 2 is derived from the linearized version 

of (4). It is stamped for each node 𝒲  in the system whose 

voltage is being controlled such that there exists at least one 

single path between the node 𝒲 and the equipment’s node 𝒪 

that is controlling it. The additional unknown variable for this 

additional constraint is dependent on the power system device 

that is controlling the voltage magnitude. For example, the 

additional unknown variable for a generator is its reactive 

Real Circuit 

+

_

Imaginary Circuit 

+

_



power 𝑄, whereas in the case of transformers, it can be the 

transformer tap 𝑡𝑟, and for FACTS devices it can be the firing 

angle 𝜑. The previous section showed how the additional 

unknown variable for PV buses is integrated in the respective 

equivalent circuits for generators. 

 
Figure 2: Voltage magnitude constraint control equivalent circuit. 

3) PQ Bus  

Like the PV bus, the constant power node (PQ bus) is also 

represented as an equivalent circuit via either a complex 

voltage source or a complex current source. It has been 

empirically determined that superior convergence is observed 

when the load bus is modeled as complex current source. The 

two fundamental equations for the real and imaginary currents 

for the PQ buses are given by: 

𝐼𝑅𝐿 =
𝑃𝐿𝑉𝑅𝐿 + 𝑄𝐿𝑉𝐼𝐿

𝑉𝑅𝐿
2 + 𝑉𝐼𝐿

2  (5) 

𝐼𝐼𝐿 =
𝑃𝐿𝑉𝐼𝐿 − 𝑄𝐿𝑉𝑅𝐿

𝑉𝑅𝐿
2 + 𝑉𝐼𝐿

2  (6) 

Linearizing the load model in (5) and (6) via Taylor 

expansion results in three elements in parallel for both real and 

imaginary circuits: a conductance, a voltage-controlled current 

source, and an independent current source.  

 
Figure 3: Equivalent split-circuit PQ load model. 

4) Physics Based Models 

It has been previously shown in [10] that any physics-based 

device model can also be directly incorporated into the 

equivalent circuit formulation. For instance, consider the three-

phase induction motor (IM) example described in [10]. The 

steady state and transient behavior of an IM can be expressed 

by a set of five ordinary differential equations. These 

mathematical expressions are mapped into an equivalent 

circuit (as shown in Fig. 4) using standard circuit simulation 

techniques [11]. Due to the use of DQ transformation [10], this 

physics based equivalent circuit model of an IM can be directly 

used for steady state power flow formulations by shorting the 

inductors and opening (open-circuiting) the capacitors.  

 
Figure 4: Equivalent circuit for the three-phase induction motor model in 

natural state variables of I-V. 

5) BIG Model 

The BIG aggregated load model introduced in [12]-[13] 

(Fig. 5) was shown to more accurately capture the actual load 

behavior when compared with more traditional load models 

such as ZIP, PQ, etc., and can be easily derived from real-time 

measurement data. Importantly, the BIG load model is linear 

in equivalent current/voltage split circuit formulation, hence it 

results in linear equality constraints for the load bus in the 

power-flow analysis. 

 
Figure 5: Equivalent circuit of a BIG load model. 

B. Circuit Simulation Techniques 

Decades of research in circuit simulation have demonstrated 

that circuit simulation methods can be applied for determining 

the DC state of a highly non-linear circuits using NR. These 

techniques have been shown to make NR robust and practical 

for large-scale circuit problems [14] consisting of billions of 

nodes. Most notable is the ability to guarantee convergence to 

the correct physical solution (i.e. global convergence) and the 

capability of finding multiple operating points [14]. We have 

previously proposed analogous techniques for ensuring 

convergence to the correct physical solution for the power flow 

and three-phase power flow problems [7]. In this section, we 

provide a short overview over these techniques. 

1) Variable Limiting 

The solution space of the system node voltages in a power 

flow problem is well defined. While solving the power flow 
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+

_
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problem, a large NR step may step out of this solution space 

and result in either divergence or convergence to a non-

physical or incorrect solution. It is, therefore, important to limit 

the NR step before an invalid step out of the solution space is 

made. In [7] we proposed variable limiting to achieve the 

postulated goal. In this technique, the state variables that are 

most sensitive to initial guesses are damped when the NR 

algorithm takes a large step out of the pre-defined solution 

space. Note however, that not all of the system variables are 

damped for the variable limiting technique, as is done for 

traditional damped NR. The circuit simulation research has 

shown that damping most sensitive variables provides superior 

convergence compared to damped NR in general. 

The plot in Fig. 6 shows results of variable limiting for a 

2383 bus test system for which the equivalent circuit was 

formulated using I-V variables. Simulations were run for six 

different initial guesses for unspecified Q (reactive power) 

supplied by the generators. The maximum bus voltage from the 

solution of the power flow problem for each initial guess is 

shown for two scenarios: without and with variable limiting 

enabled. The plots show that when variable limiting is not 

enabled, in most cases the voltage solution diverges to very 

high magnitudes (up to 104). However, when the variable 

limiting option is enabled, divergence is not observed, and the 

bounded bus voltages result in fast convergence. 

 
Figure 6: Voltage profile for maximum bus voltage in 2383 Bus System: a) 

w/o Variable Limiting b) with Variable Limiting 

To apply variable limiting in our prototype simulator, the 

mathematical expressions for the PV nodes in the system are 

modified as follows: 

𝐼𝐶𝐺
𝑘+1 =   𝜍

𝜕𝐼𝐶𝐺

𝜕𝑉𝑅𝐺
(𝑉𝑅𝐺

𝑘+1 − 𝑉𝑅𝐺
𝑘 ) + 𝐼𝐶𝐺

𝑘   

+ 𝜍
𝜕𝐼𝐶𝐺

𝜕𝑉𝐼𝐺
(𝑉𝐼𝐺

𝑘+1 − 𝑉𝐼𝐺
𝑘 ) +

𝜕𝐼𝐶𝐺

𝜕𝑄𝐺
(𝑄𝐺

𝑘+1 − 𝑄𝐺
𝑘) 

(7) 

where, 0 ≤ 𝜍 ≤ 1 and 𝐶 ∈ {𝑅, 𝐼} represents the placeholder for 

real and imaginary parts. The magnitude of 𝜍 is dynamically 

varied through heuristics such that convergence to the correct 

physical solution is achieved in the most efficient manner. The 

heuristics depend on the largest delta voltage (∆𝑉𝑅, ∆𝑉𝐼) step 

during subsequent NR iterations. If during subsequent NR 

iterations, a large step (∆𝑉𝑅 , ∆𝑉𝐼) is encountered, then the 

factor 𝜍 is decreased. The factor 𝜍 is scaled back up if 

consecutive NR steps result in monotonically decreasing 

absolute values for the largest error. 

2) Voltage Limiting 

An equally simple yet effective technique is to limit the 

absolute value of the delta step that the real and imaginary 

voltage vectors are allowed to make during each NR iteration. 

This is analogous to the voltage limiting technique used for 

diodes in the circuit simulation wherein the maximum 

allowable voltage step during NR is limited to twice the 

thermal voltage of the diode. Furthermore, for power flow 

analysis based on the equivalent circuit formulation, a hard 

limit is enforced on the real and imaginary voltages in the 

system. The mathematical implementation of voltage limiting 

in our formulation is as follows: 

𝑉𝐶
𝑘+1 = min

𝑉𝐶
𝑚𝑖𝑛

max
𝑉𝐶

𝑚𝑎𝑥
(𝑉𝐶

𝑘 + 𝛿𝑆 min(|∆𝑉𝐶
𝑘|, ∆𝑉𝐶

𝑚𝑎𝑥)) (8) 

where, min 
𝑉𝐶

𝑚𝑖𝑛
max
𝑉𝐶

𝑚𝑎𝑥
(𝑥) =  {

𝑉𝑐
𝑚𝑎𝑥 , 𝑖𝑓 𝑥 >  𝑉𝑐

𝑚𝑎𝑥  

𝑉𝑐
𝑚𝑖𝑛 , 𝑖𝑓 𝑥 <  𝑉𝑐

𝑚𝑖𝑛 
𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9) 

where 𝛿𝑆 = 𝑠𝑖𝑔𝑛(∆𝑉𝐶
𝑘) and 𝐶 ∈ {𝑅, 𝐼} represents the 

placeholder for real and imaginary parts 

III. HOMOTOPY METHOD 

In our previous publications [7], circuit simulation methods 

with equivalent circuit formulation were shown to achieve 

robust convergence for the power flow problems from an 

arbitrary set of initial conditions for test cases up to 15k buses. 

However, for systems that are greater than 50k buses, these 

methods alone are at times unable to achieve convergence to 

correct physical solution from an arbitrary set of initial 

conditions. For these cases, the solver either converged to a 

low voltage solution or diverged altogether.  

To tackle these challenges, we propose the use of homotopy 

methods to ensure convergence for the system to the correct 

physical solution independent of its complexity or scale. 

Homotopy methods that have been proposed in the past [2], [8] 

have suffered from convergence to low voltage solutions [2] 

and divergence. Furthermore, none of the previously proposed 

homotopy methods are known to scale up to test systems [9] 

that are of the scale of European or the US grids, which is 

essential for secure operation and operation of these systems. 

For example, the Eastern Interconnection system of the US 

grid is composed of more than 80,000 buses.  

With homotopy methods, the original problem is replaced 

with a set of sub-problems that are sequentially solved. The set 

of sub-problems exhibit certain properties: i) the first sub-

problem has a trivial solution and ii) each incrementally 

subsequent problem has a solution very close to the solution of 

the prior sub-problem. Mathematically this can be described 

via the following expression: 

ℋ(𝑥, 𝜆) = (1 − 𝜆)ℱ(𝑥) +   𝜆𝒢(𝑥)  (10) 

where 𝜆  [0, 1]. 



The method begins by replacing the original problem 

ℱ(𝑥) = 0 with ℋ(𝑥, 𝜆) = 0. The equation set 𝒢(𝑥) is a 

representation of the system that has a trivial solution. The 

homotopy factor 𝜆 has the value of 1 for the first sub-problem 

and therefore the initial solution is equal to trivial solution 

of 𝒢(𝑥). For the final sub-problem that corresponds to the 

original problem, the homotopy factor 𝜆 has the value of zero. 

In order to generate sequential sub-problems, the homotopy 

factor is dynamically decreased in small steps until it has 

reached the value of zero. 

IV. TX (TRANSMISSION LINE) STEPPING 

We propose a new homotopy approach “Tx Stepping” that 

is specifically defined for the non-linearities observed in the 

power flow and three-phase power flow problems. 

A. General Approach  

The series elements in the system (transmission lines, 

transformers etc.) are “virtually” shorted at first to solve the 

initial problem that has a trivial solution.  Specifically, a large 

conductance (G) and a large susceptance (B) are added in 

parallel to each transmission line and transformer model in the 

system.  Importantly, the solution to this initial problem results 

in high system voltages (magnitudes) as they are essentially 

driven by the slack bus complex voltage and the PV bus 

voltage magnitude due to the low voltage drops in the lines and 

transformers (as expected with virtually shorted systems). 

Similarly, the solution to bus voltage angles will lie within a 

-small radius around the slack bus angle. Subsequently, like 

other continuation methods, the formulated system problem is 

then gradually relaxed to represent the original system by 

taking small increment steps of the homotopy factor ( 𝜆) until 

convergence to the solution of the original problem is 

achieved.  Mathematically, this is expressed by: 

𝑖  {𝑇𝑥, 𝑋𝑓𝑚𝑟𝑠} ∶ 𝐺̂𝑖 =  𝐺𝑖 + 𝜆𝛾𝐺𝑖  (11) 

𝑖  {𝑇𝑥, 𝑋𝑓𝑚𝑟𝑠} ∶ 𝐵̂𝑖 =  𝐵𝑖 + 𝜆𝛾𝐵𝑖  (12) 

𝑖  𝑆ℎ𝑢𝑛𝑡𝑠 ∶  𝐺̂𝑖
𝑠ℎ

+ 𝑗𝐵̂𝑖
𝑠ℎ

= (1 −  𝜆𝛾)(𝐺𝑖
𝑠ℎ + 𝑗𝐵𝑖

𝑠ℎ) 

(13) 

where, Xfmrs is the set of all transformers and Tx is the set of 

all the transmission lines in the system. 𝐺𝑖 ,  𝐵𝑖 , 𝐺𝑖
𝑠ℎ and 𝐵𝑖

𝑠ℎ  

are the original system impedances and the 𝐺̂,  𝐵̂ , 𝐺̂𝑠ℎ  and 𝐵̂𝑖
𝑠ℎ

 

are the system impedances used while iterating from trivial 

problem to the original problem. The parameter 𝛾 is used as a 

scaling factor for the conductances (𝐺) and susceptances (𝐵).  

If the homotopy factor (𝜆) takes the value one, the system has 

a trivial solution and if its takes the value zero, the original 

system is represented.   

Along with ensuring convergence for a problem, Tx 

stepping avoids the undesirable low voltage solutions for the 

power flow problem since the initial problem results in a 

solution with high system voltages, and subsequent step of the 

homotopy approach continues and deviates ever so slightly 

from this initial solution, thereby guaranteeing convergence to 

the high voltage solution for the original problem. 

B. Handling of Transformer Phase Shifters and Taps 

To “virtually short” a power system, we must also account 

for transformer taps 𝑡𝑟 and phase shifters θ. In a “virtually” 

shorted condition, all the nodes in the system have complex 

voltages that is in close proximity to the slack bus or PV bus 

complex voltages, which can be intuitively defined by a small 

epsilon norm ball around these voltages. Therefore, in order to 

achieve the following form we must modify the transformer 

taps and phase shifter angles such that at 𝜆 = 1, their turns 

ratios and phase shift angles correspond to a magnitude of 1 pu 

and 0°, respectively. Subsequently, the homotopy factor 𝜆 is 

varied such that the original problem is solved with original 

transformer tap and phase shifter settings. This can be 

mathematically expressed as follows: 

𝑖  𝑋𝑓𝑚𝑟𝑠 ∶ 𝑡𝑟̂𝑖 = 𝑡𝑟𝑖 + 𝜆(1 − 𝑡𝑟𝑖) (14) 

𝑖  𝑋𝑓𝑚𝑟𝑠 ∶ 𝜃̂𝑖 = 𝜃𝑖 − 𝜆𝜃𝑖 (15) 

C. Handling of Voltage Control for Remote Buses 

To achieve a trivial solution during first step of Tx stepping 

it is essential that we also handle remote voltage control 

appropriately. Remote voltage control refers to a phenomenon 

wherein a device on node 𝒪 in the system can control the 

voltage of another node 𝒲 in the system. This behavior is 

highly non-linear and if not handled correctly can result in 

divergence or converge to low voltage solution. Existing 

commercial tools for power flow suffer from this problem and 

lack the robustness to handle remote voltage control 

effectively. Therefore, in the Tx stepping method, we 

introduce a technique wherein we “virtually short” the path 

between the controlling node (𝒪) and the controlled node (𝒲) 

at 𝜆 = 1, such that the device at the controlling node can easily 

supply the currents to the controlled node 𝒲 and control its 

voltage. Subsequently during homotopy, we gradually relax 

the system such that additional line connecting the controlling 

node (𝒪) and controlled node (𝒲) is open at 𝜆 = 0. 

V. IMPLEMENTATION OF TX STEPPING IN EQUIVALENT 

CIRCUIT FORMULATION 

Unlike traditional implementations of homotopy methods, 

in our equivalent circuit formulation we do not directly modify 

the non-linear set of mathematical equations but instead embed 

a homotopy factor in each of the equivalent circuit models for 

the power grid components. In doing so we allow for 

incorporation of any power system equipment into the Tx 

stepping approach within the equivalent circuit formulation 

framework without loss of generality. Furthermore, we ensure, 

that the physics of the system is preserved while modifying it 

for the homotopy method. Fig. 7 and 8 represent the equivalent 

circuits for transmission lines and transformers respectively, 

with homotopy factor λ embedded in them. The value of λ lies 

in the closed set [0, 1] and can take any value in the set. 

When Tx-stepping option is enabled, the solver initiates by 

solving the modified trivial problem at λ = 1. The solver then 

traverses towards the original problem (at λ=0) by dynamically 

varying the homotopy factor λ. The solver initially decreases 

the homotopy factor in large steps. However, if a large error is 



encountered between the two consecutive sub-problems, the 

step-size between homotopy factors is scaled down until error 

in an acceptable range in observed. The step-size between 

consecutive homotopy factors is scaled back up if the sub-

problems result in monotonically decreasing absolute values 

for the largest error. 

  
Figure 7: Homotopy factor embedded in transmission line equivalent circuit. 

 

 
Figure 8: Homotopy factor embedded in transformer equivalent circuit. 

VI. RESULTS 

Example cases were simulated in our prototype solver 

SUGAR (Simulation with Unified Grid Analyses and 

Renewables) to validate “Tx Stepping” homotopy method. The 

example cases include known ill-conditioned test cases and 

large systems that represent different operating conditions of 

the eastern interconnection of the US grid. We affirm that the 

proposed framework can guarantee convergence to correct 

physical solutions for all power flow cases, independent of the 

choice of the initial guess. 

A. Ill-Conditioned Systems 

In mathematical theory, if the condition number of a given 

matrix is large, then the matrix and the system corresponding 

to that matrix are ill-conditioned. In the power flow problem, 

the matrix of interest is the Jacobian that is used to calculate 

the updated system state variables at each NR step. If the 

condition number of the Jacobian matrix is large at the solution 

point, then the system is assumed to be ill-conditioned. The 11-

bus, 13-bus, and 43-bus test cases from the power system 

literature [15] are considered as ill-conditioned systems. 

However, it is systematically shown in [15] that out of these 

three systems, the 11-bus system is the only genuine ill-

conditioned system with a maximum loading of 99.82 %.  The 

13-bus system is not an ill-conditioned system and can easily 

be solved via any power flow method, and the 43-bus test case 

has a maximum loading of 58 % for, which there is no feasible 

solution for the base loading.  

Table 1shows the comparison of results for the 11 bus ill-

conditioned test case at 99.82 % loading for different set of 

initial conditions. Using standard commercial tools, for most 

initials conditions the system is likely to converge to a low 

voltage solution or diverge. Without homotopy methods, the 

commercial solver can only converge to the correct physical 

solution if the initial condition is the solution itself. However, 

SUGAR can converge to the correct physical solution from 

arbitrary initial conditions when Tx Stepping is applied.  

TABLE 1: COMPARISON OF RESULTS FOR MODIFIED 11 BUS TEST CASE 

Initial Condition Ill Conditioned 11 Bus Test Case  

Vmag (pu) Vang (°) 
Standard Commercial 

Tool2 
SUGAR1 

1 0 Low Voltage  High Voltage 

0.76 23 Low Voltage  High Voltage 

0.71 45 Low Voltage  High Voltage 

High Voltage High Voltage High Voltage High Voltage 

1. Tx Stepping was enabled while running simulations in SUGAR 

2. Full Newton Raphson was the solver used in Standard Commercial Tool 

Another notable ill-conditioned case is a 13659-bus system 

from the PEGASE test cases. At the solution point, the 

approximate condition number of the system Jacobian is 1.7e8. 

Fig. 9 shows convergence results for this test case from ten 

arbitrary initial conditions for a standard commercial tool and 

SUGAR. From the set of 10 initial conditions, the standard 

commercial tool converged to the correct physical solution 

once, diverged 8 times, and converged to the angular unstable 

solution one time. The ten initial conditions were chosen 

uniformly from the set of: 

𝑉𝑟   [0.6, 1.1 ], 𝑉𝑖  =  {𝑥  ℝ𝑛 | 𝑥 =  1 – 𝑉𝑟}. (16) 

 
Figure 9: Results for 13659 buses PEGASE system. 

B. Large Test Cases 

We next demonstrate that the Tx stepping method is 

scalable to large test cases and that it ensures convergence from 

arbitrary initial conditions. Fig. 10 shows the results for six 

distinct test systems that represent the eastern interconnection 

network of the US power grid under different loading 

conditions (Summer/Winter) and time periods (2017, 2018, 

2021, 2026 etc.). The Tx stepping method was used to solve 

each of these systems from a set of different initial conditions 

that were uniformly chosen from the sets of: 

𝑉𝑎𝑛𝑔   [−50, 50] , 𝑉𝑚𝑎𝑔   [0.6, 1]. (17) 

The vertical and horizontal axes of the figure represent the 

set of initial conditions (𝑉𝑎𝑛𝑔, 𝑉𝑚𝑎𝑔) for a given case, 



respectively. If the case converged to a correct physical 

solution, it is marked via a green mark; whereas if the case 

diverged then it is marked via a red mark. The figure indicates 

that the Tx stepping method was able to achieve convergence 

for all the six large eastern interconnection systems 

independent of the choice of initial conditions. The run time 

per iteration for the eastern interconnection test cases in 

SUGAR is comparable to other available commercial tools 

(less than 0.4s per iteration). The total simulation time for the 

test cases is dependent on the choice of initial conditions. 

 
Figure 10: Convergence sweep of large cases that represent Eastern 

Interconnection from range of initial conditions 

To further demonstrate the robustness of our approach, we 

consider a set of scenarios wherein we plan a realistic 

contingency on large test cases. The contingency in these cases 

is defined by loss of either two (𝒩2) or three (𝒩3) generators 

in the system. We then solve these cases with the contingency 

applied using the commercial tool and SUGAR. The initial 

conditions for all the cases is chosen as the solution prior to the 

contingency (thereby suggesting that the system is close to its 

operating state post-contingency). We demonstrate the results 

in Table 2. 

TABLE 2: CONTINGENCY ANALYSIS FOR LARGE TEST CASES 

Case Contingency 

Type 

No. of 

Buses 

Standard 

Commercial Tool 

SUGAR 

Case 1 𝒩2 75456 Diverge Converge 

Case 2 𝒩2 78021 Diverge Converge 

Case 3 𝒩3 80293 Diverge Converge 

Case 4 𝒩3 81238 Diverge Converge  

The results in Table 2 further demonstrate the robustness of 

our solver when using Tx Stepping. Importantly, this will 

enable future optimal power flow tools by being able to readily 

and robustly validate the security constraints on the optimal 

power flow dispatch and allow for robust Monte Carlo 

analysis. 

VII. CONCLUSIONS 

In this paper, the power flow problem is formulated using 

an equivalent circuit framework that when combined with 

novel homotopy continuation method “Tx Stepping” and other 

circuit simulation methods is able to achieve convergence to 

the correct physical solution for any test system independent 

of its scale or complexity. This work directly addresses known 

convergence issues in the existing formulations for power flow 

analysis and in doing so enables robust contingency analysis, 

security constrained optimal power flow, state estimation, and 

probabilistic power flow for large and ill-conditioned test cases 

representing complex power grid. 
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