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Abstract—In order to enable large-scale penetration of renew-
ables with variable generation, new sources of flexibility have to
be exploited in the power systems. Allowing asymmetric block
offers (including response and rebound blocks) in balancing
markets can facilitate the participation of flexibility aggregators
and unlock load-shifting flexibility from, e.g., thermostatic loads.
In this paper, we formulate an optimal offering strategy for a
risk-averse flexibility aggregator participating in such a market.
Using a price-taker approach, load flexibility characteristics and
balancing market price forecast scenarios are used to find optimal
load-shifting offers under uncertainty. The problem is formulated
as a stochastic mixed-integer linear program and can be solved
with reasonable computational time. This work is taking place
in the framework of the real-life demonstration project EcoGrid
2.0, which includes the operation of a balancing market on
the island of Bornholm, Denmark. In this context, aggregators
will participate in the market by applying the offering strategy
optimization tool presented in this paper.

Index Terms—Flexibility aggregator, asymmetric block offers,
balancing market, load shifting, offering strategy, risk.

NOTATION

Sets and indices
T Set of time steps t and t′ in the optimization horizon.
Ω Set of balancing market price scenarios ω.
S Set of possible shapes s for an offer’s response/rebound part.

S+ Subset of S: set of up-regulation shapes.
S− Subset of S: set of down-regulation shapes.

Ξ Set of all variables of the optimization problem.

Continuous Parameters
λtω Balancing market price forecast for time t and

scenario ω [e/MWh].
πω Probability associated with scenario ω.
µ A relatively small value, defined as (T + 1)−1.
Ps Regulation power of shape s [MW].
P Maximum regulation power that the aggregator can

provide [MW].
α Confidence level for CVaR calculation.
β Weighting parameter for CVaR in objective function.

This work was supported by the Energy Technology Development and
Demonstration Programme (EUDP) through the project of EcoGrid 2.0
(64015-0082/EUDP).

Integer Parameters
T Number of time steps in the optimization horizon.
Ts Duration of shape s [time steps].
Trec Minimum recovery time between two blocks [time steps]

(should only take values 0 or 1 with this problem formulation).

Continuous Variables
prespt Power offered during the response period of a block starting at

time t [MW].
prebt Power offered during the rebound period of a block starting at

time t [MW].
qresptt′ Contribution of the response part of a block starting at time t′

to the power offered at time t [MW].
qrebtt′ Contribution of the rebound part of a block starting at time t′

to the power offered at time t [MW].
ζ, ηω Auxiliary variables used in the calculation of CVaR.

Integer Variables
τ respt Duration of the response period of a block starting at time t

[time steps].
τ rebt Duration of the rebound period of a block starting at time t

[time steps].
srespt Shape of the response part of a block starting at time t.
srebt Shape of the rebound part of a block starting at time t.

Binary Variables
vrespts Indication that a block starting at time t has a response part

following the shape s.
vrebts Indication that a block starting at time t has a rebound part

following the shape s.
u0
tt′ Indication that time step t is not before time step t′.
u1
tt′ Indication that time step t is after the response period of a block

starting at time t′.
u2
tt′ Indication that time step t is after the rebound period of a block

starting at time t′.
u3
tt′ Indication that time step t is beyond the recovery period of a

block starting at time t′.

I. INTRODUCTION

In the context of increasing penetration of intermittent
energy sources, there is a growing demand for flexibility in
power systems around the world. Demand response (DR) is
considered as a promising flexibility resource [1]. In particular,
there is substantial potential for flexibility provision using



demand-side assets that are already installed and connected
to the grid [2]. Activation of DR however poses challenges,
especially due to the lack of appropriate business models [3].
To unlock this potential, novel market structures and control
methods are necessary and it is envisioned that aggregators
will have a key role to play in this new process [4].

There is extensive literature on bidding strategies for ag-
gregators seeking to purchase power in the day-ahead market
for a pool of flexible loads. These works differ in how they
model flexibility from the aggregators’ perspective. Some pa-
pers model flexible demand-side resources as price-responsive
loads [5], [6], while others directly model the loads’ flexible
power consumption using a set of constraints in an optimiza-
tion problem. Such models may use time-varying power and
energy constraints, and apply well to time-shiftable loads such
as electric vehicles, water heaters or dishwashers [7], [8].

Other works have focused on the provision of balancing
services by aggregators, either through direct contracts with
intermittent power producers such as wind power producers
[9], [10], or through participation in balancing markets [11].
These works are valuable because they unlock substantial po-
tential for the provision of balancing services from aggregate
flexible loads. However, when details are provided on the
relation between market prices and regulation power provision,
common approaches adopted in these works are either to
assume a simple price response curve with no coupling of
successive time steps, or to assume that the aggregator has full
knowledge of the characteristics of each responsive element.

In [12], an alternative approach for representing the flexi-
bility of supermarket refrigerators is proposed, based on the
concept of saturation curves. Such curves are meant to model
the potential rebound effect after DR activation, and thereby
to ease the planning of load-shifting operations. In [13], it is
proposed to solve an economic dispatch for regulation power
provision which integrates load-shifting options in the form of
asymmetric block offers. A method for the definition of such
blocks is proposed in [13], and its positive effect on system
costs is demonstrated. In the real-life demonstration project
EcoGrid 2.0 [14], a balancing market which accepts asym-
metric block offers from aggregators is being implemented on
the island of Bornholm, Denmark. Based on this project, we
develop in this paper an optimal offering strategy tool for a
flexibility aggregator participating in such a balancing market
with asymmetric block offers.

The main contribution of this paper is the formulation of a
stochastic mixed-integer linear optimization problem to derive
the optimal offer of a risk-averse aggregator in the form
of asymmetric block offers. This allows exploiting flexibility
from demand-side assets represented by saturation curves, us-
ing probabilistic forecast of balancing market prices. Applying
this formulation, a case study is presented, where results are
demonstrated and compared with different risk preferences.
Computational issues are then discussed. To the best of our
knowledge, there is no offering strategy tool for an aggregator
in the literature that allows to derive asymmetric block offers.

The rest of this paper is organized as follows. The balancing
market and the format of asymmetric block offers are defined
in Section II. The proposed optimization problem for offering
strategy is described in Section III. In Section IV, a case
study is presented, along with a discussion on computational
complexity. The paper is concluded in Section V. Finally, an
Appendix provides the mixed-integer linear equivalent of the
proposed model.

II. MARKET DEFINITION

In this paper, we study the offering problem for a flexibility
aggregator participating in a balancing market which accepts
asymmetric block offers. This offer format is proposed in [13]
and is being implemented on the island of Bornholm, Den-
mark, in the framework of the demonstration project EcoGrid
2.0. An asymmetric block offer represents the possibility of
shifting load, in the form of load advancing or load delaying,
and is characterized by five attributes, as shown in Fig. 1:
• duration τ resp

t and power effect presp
t of the response part

of the offer,
• duration τ reb

t and power effect preb
t of the rebound part

of the offer,
• recovery time Trec following the load-shifting operation.

In the case of a load-advancing offer (as in Fig. 1), the
response part of the offer corresponds to down-regulation and
the rebound part to up-regulation. In the case of a load-
delaying offer, the response part of the offer corresponds to
up-regulation and the rebound part to down-regulation1. The
“asymmetric” term implies that the power quantities presp

t and
preb
t , as well as the time durations τ resp

t and τ reb
t are not

necessarily identical. The duration of each part of the offer is
counted in number of market time steps, the length of which
is defined by the market operator (eight 15-minute time steps
in the case of the EcoGrid 2.0 project). Along with these five
attributes, an asymmetric block offer comes with an offering
price for each time step.

Time
[discrete steps]

𝜏 t
resp

𝜏 t
reb

Trec

𝑝t
resp

𝑝t
reb

t t+1t-1

Response part

Rebound part

Regulation
power [MW]

Figure 1. Illustration of an example asymmetric block offer.

The market setting that is considered in this paper is a
balancing market in the transmission level, which clears both
conventional regulation offers (single-time-step upward- or

1The convention for the sign of power quantities used in the paper
is as follows: a positive amount of regulation power corresponds to up-
regulation, i.e. a decrease in load power consumption; a negative amount
of regulation power corresponds to down-regulation, i.e. an increase in load
power consumption.



downward-regulation offers) and asymmetric block offers. We
consider the case of an aggregator which seeks to maximize its
expected profit by submitting asymmetric block offers to this
market. It is assumed that the aggregator makes only one offer
at a time, but optimizes over a time horizon. As a consequence,
foresight of future opportunities may influence the offering
strategy for the most immediate market clearing.

In line with traditional self-scheduling problems [15], [16],
the aggregator forecasts the future market prices, but this may
bring uncertainty, which is characterized by a set of foreseen
scenarios. The other sources of uncertainty, e.g., availability
of flexible resources in the aggregator’s portfolio, are not
considered; however, it is straightforward to consider them
by additional scenarios.

III. OFFERING MODEL

In this section, we present the optimization problem which
gives an optimal offering strategy for a flexibility aggregator
participating in a balancing market with asymmetric block
offers.

A. Saturation curve modelling

We consider that the aggregator is controlling a population
of flexible assets with load-shifting capabilites, described by
a single saturation curve for the whole portfolio [12], [13].
This saturation curve describes the possible combinations of
attributes for an asymmetric block offer representing a feasible
load-shifting operation. By feasible, it is meant that the load-
shifting operation does not bring the assets to a point outside
the operating region defined by the end-user, and that the assets
are at the same operating point before and after the operation.
For instance, in the case of a refrigeration system, it means
that the system’s temperature should be in the comfort limit
both before and after DR activation, and that the system’s
temperature does not exceed specific lower and upper bounds
during the operation. It is thus expected that a decrease in
power consumption is followed or preceeded by an increase
in power consumption, according to the feasible combinations
described by the saturation curve. Fig. 2 depicts a sample
saturation curve based on a series of measurement points
(blue asterisks), and modelled as two functions of the form
y = a

xb , (a, b) ∈ R2 (solid red lines). The interpretation of
this curve is that any pair of points respectively falling on its
negative and positive sides gives a feasible response-rebound
combination as defined in Section II.

From these curves, discrete options are extracted based
on the length of the market time resolution. Indeed, if the
balancing market is cleared for time steps of 15 minutes,
only offers whose duration is a multiple of 15 minutes can
be cleared. These options (red circles in Fig. 2) are used
as parameters within the mixed-integer optimization problem
presented in this section, where they are referred to as shapes.

Accordingly, an aggregator with a saturation curve as in
Fig. 2 has several options for the down-regulation part of its
offer. It could for example offer a load increase of 8.7 MW
for 60 minutes, or a load increase of 7.4 MW for 75 minutes
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Figure 2. Illustration of a sample saturation curve, including the down-
regulation part (left) and the up-regulation part (right).

(cf. dashed lines on the left side). Similarly, the up-regulation
part of the offer can take different shapes, for example a load
reduction of 5.7 MW for 105 minutes (cf. dashed lines on the
right side). A strategic choice would be based on what seems
to be the most beneficial offer in foresight of future balancing
market prices.

B. Mathematical formulation

The optimization is made in a probabilistic framework,
where balancing price uncertainty is modelled using scenarios.
The method for forecasting balancing prices is beyond the
focus of this paper, and probabilistic balancing price forecasts
are here considered as a given input. Furthermore, the aggre-
gator is considered risk-averse, and a conditional value-at-risk
(CVaR) metric [17], [18] is accounted for in the optimization
problem. The offering strategy is derived based on the solution
of the proposed stochastic optimization problem.

We further make the assumption that the aggregator is
price-taker, and we evaluate its expected profit based on a
self-scheduling approach, i.e., the offers are considered to
be scheduled in all scenarios, and the corresponding market
prices are used for calculating the profit associated with each
scenario. In line with this approach, we do not focus on
the definition of offering prices. In practice, ensuring self-
scheduling of asymmetric blocks for a price-taker aggregator
could be done by systematically defining extremely low up-
regulation offering prices and extremely high down-regulation
offering prices.

The proposed stochastic optimization problem for the aggre-
gator’s offering strategy is composed of the objective function
(1) and the set of constraints (2)-(8).

The objective function (1), to be maximized, corresponds
to a weighted sum of the aggregator’s expected profit given
a set of price scenarios and its expected profit in the worst-
case scenarios, calculated by the CVaR risk metric. In this
expression, the first row corresponds to the expected profit,
and is calculated, for each time step, as the product of the
expected balancing price and the regulation power offered in



the market. The second row in (1) corresponds to the CVaR
risk metric weighted by a non-negative parameter β:

Max.
Ξ

T∑
t=1

(∑
ω∈Ω

(πωλtω)

T∑
t′=1

(
qresp
tt′ + qreb

tt′
))

+ β

ζ −
∑
ω∈Ω

(πωηω)

1− α

 , (1)

where Ξ = {presp
t , preb

t , qresp
tt′ , q

reb
tt′ , ζ, ηω, τ

resp
t , τ reb

t , sresp
t ,

sreb
t , vresp

ts , vreb
ts , u

0
tt′ , u

1
tt′ , u

2
tt′ , u

3
tt′} is the set of optimization

variables.
The variables qresp

tt′ and qreb
tt′ calculate the contribution of all

planned offers to the regulation power provision at all time
steps. They follow:

qresp
tt′ =


presp
t′ if t ≥ t′

and t < t′ + τ resp
t′

0 otherwise,
∀ (t, t′) ∈ T 2, (2a)

qreb
tt′ =


preb
t′ if t ≥ t′ + τ resp

t′

and t < t′ + τ resp
t′ + τ reb

t′

0 otherwise,
∀ (t, t′) ∈ T 2. (2b)

Note that the current form of (2) is non-linear due to the
conditional statements, and its mixed-integer linear equivalent
is given in Appendix.

The auxiliary variables ηω ∈ R+, ∀ ω ∈ Ω and ζ ∈ R are
used to compute the CVaR risk metric [17], [18]. Equation
(3) below defines the relation between these variables and the
profit yielded for each price scenario:

ζ −
T∑

t=1

(
λtω

T∑
t′=1

(
qresp
tt′ + qreb

tt′
))
≤ ηω, ∀ ω ∈ Ω. (3)

Equations (4) compute the state variables that describe the
power effect and duration of each part of a block, based on
the different shapes’ characteristics. The binary variables vresp

ts

and vreb
ts indicate whether the response or the rebound part of a

block starting at time t follows shape s. The integer variables
sresp
t and sreb

t determine the shapes of the response part and
the rebound part, respectively, of a block starting at time t:

vresp
ts =

{
1 if s = sresp

t

0 otherwise,
∀ t ∈ T , (4a)

vreb
ts =

{
1 if s = sreb

t

0 otherwise,
∀ t ∈ T , (4b)

presp
t = Psrespt

, ∀ t ∈ T , (4c)

preb
t = Psrebt

, ∀ t ∈ T , (4d)

τ resp
t = Tsrespt

, ∀ t ∈ T , (4e)

τ reb
t = Tsrebt

, ∀ t ∈ T . (4f)

Similar to (2), the mixed-integer linear equivalent of (4)
is given in Appendix. Additional constraints are required
to ensure that, if the response part of a block follows a

down-regulation shape, its rebound part should follow an up-
regulation shape, and vice versa. For this purpose, we use the
subsets S+ and S− to designate the up-regulation and down-
regulation shapes. Below, constraint (5a) ensures that, for each
block, only one part among response and rebound follows an
up-regulation shape. Similarly, constraint (5b) ensures that, for
each block, only one part follows a down-regulation shape:∑

s∈S+

(vresp
ts + vreb

ts ) = 1, ∀ t ∈ T , (5a)∑
s∈S−

(vresp
ts + vreb

ts ) = 1, ∀ t ∈ T . (5b)

It is further ensured that no blocks overlap. A block is
considered to be activated if its corresponding variables presp

t ,
preb
t , τ resp

t and τ reb
t take non-zero values. Equation (6) ensures

that no block starts within the period covered by a previously
activated block:

τ resp
t =τ reb

t =0 if ∃ t′ / t≤ t′+τ resp
t′ +τ reb

t′ −1, ∀ t ∈ T . (6)

The mixed-integer linear equivalent of (6) is given in Ap-
pendix. Moreover, all blocks should be contained within the
optimization horizon. Equation (7) ensures that any block that
is activated has a duration, including response and rebound,
that does not reach beyond the end of the optimization horizon:

t+ τ resp
t + τ reb

t − 1 ≤ T, ∀ t ∈ T . (7)

Finally, equations (8) ensure that, if the response part of a
block follows an empty shape (i.e., presp

t = τ resp
t = 0), then the

rebound part also follows the same shape (i.e., preb
t = τ reb

t =
0), and vice versa. This ensures that a block needs both a
substantial response and rebound part to be activated:

τ resp
t ≥ τ reb

t T−1, ∀ t ∈ T , (8a)

τ reb
t ≥ τ

resp
t T−1, ∀ t ∈ T . (8b)

IV. CASE STUDY

A. Input data

We evaluate the proposed offering strategy tool with a case
study where a flexibility aggregator controls a pool of flexible
loads characterized by the saturation curve in Fig. 2, and
accordingly submits asymmetric block offers to the balanc-
ing market. The offering strategy is based on probabilistic
forecasts of the balancing prices over a 12-time-step horizon.
Risk-aversion of the aggregator is characterised by a 95%
confidence level, i.e., α = 0.95.

The uncertain future balancing market prices are charac-
terised by 100 equiprobable scenarios, derived from forecasts
of the power system imbalance and from known day-ahead
market prices. Fig. 3 shows the 100 price scenarios used in this
case study. As can be noted from the figures, the uncertainty
on the future power system imbalance, and thus on the prices,
is considered to increase with the look-ahead time.

Some of the low-range forecasts in Fig. 3 feature negative
balancing market prices. Although rare in the current system
conditions, negative balancing market prices are likely to occur
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Figure 3. Balancing price forecast scenarios (100 scenarios). Program time
unit (ptu) is 15 minutes.

when actors such as wind power producers and demand-side
aggregators are participating in the balancing market. In the
case of a net demand for up-regulation, it means that some
actors are ready to pay to provide up-regulation power; in
the case of a net demand for down-regulation, it means that
the most expensive scheduled supplier asks for being paid to
provide down-regulation power.

B. Results

Offering strategies are derived from the optimization prob-
lem for different degrees of risk-aversion, i.e., different values
for the CVaR weighting coefficient β. The solutions are
analysed for a risk-neutral case (β = 0) and for a risk-averse
case (e.g., β = 2). Table I summarizes the outcomes obtained
for these two sample cases. The foreseen optimal offering
strategy is depicted in Fig. 4 for the risk-neutral case (top)
and for the risk-averse case (bottom).

TABLE I
AGGREGATOR’S OUTCOMES FOR TWO DIFFERENT RISK PREFERENCES

β Expected profit [e] CVaR [e]

Risk-neutral 0 432.5 -36.8
Risk-averse 2 282.8 73.0

Note that the risk-neutral strategy (Fig. 4, top) foresees an
offer that reaches to the last time step of the optimization
horizon. The comparatively high uncertainty at the end of
the horizon (see Fig. 3) likely makes it difficult to select
risk-hedging offers in the risk-averse case. This encourages
the risk-averse aggregator to concentrate offers in earlier time
steps, as depicted in Fig. 4 (bottom).

On the other hand, in the risk-neutral case, a comparatively
long offer is chosen as, with the saturation characteristics
described in Fig. 2, it happens to be a more energy-efficient
offer than two successive shorter offers. Indeed, loads may
have changing efficiencies at different operation points, e.g.,
for a cooling system, the ratio between a change in power
consumption and the subsequent change in temperature may
not be constant for different power or temperature levels.
This can make the energy content of the up-regulation and
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Figure 4. Offering strategy of the aggregator in the risk-neutral case (top,
β = 0) and in the risk-averse case (bottom, β = 2).

down-regulation parts of an asymmetric block offer unequal,
although respecting the flexible loads’ saturation curve.

Finally, it appears that the offer chosen for the beginning
of the horizon is the same in both cases. This is due to a
relatively small uncertainty in price forecasts for the first few
time steps. As a consequence, the worst-case scenarios are not
very different from the other scenarios yet, and different risk
preferences are not affecting the choices made for these steps.

C. Limitations for the expression of risk preferences

All other parameters being equal, changing the risk pref-
erence (i.e., using a different value for the coefficient β) will
however not yield solutions different from the two alternatives
presented above. This is related to the limited number of op-
tions for the formulation of asymmetric block offers contained
within a 12-time-step horizon. Increasing the number of time
steps in the optimization horizon would increase the number
of alternative offering strategies, and is thus expected to allow
for enhanced expression of risk preferences.

An increased number of time steps corresponds either to
an optimization horizon reaching further in the future, or to
the use of shorter time steps, i.e., increased time resolution.
In the former case, strategic offering can be compromised by
increased uncertainty in longer look-ahead times, while in the
latter case, market design is a constraint. Another barrier exists
to the computation of optimal offering strategies over a larger
number of time steps: the time required for computing the



solution. As shown in the following section, augmenting the
time resolution by a factor 3 would have critical consequences
on the solution time.

Alternatively, the expression of risk preferences may be
enhanced by strategic design of offering prices, as well as
the combination of offers from multiple clusters of flexible
assets, represented by independent saturation curves. This is
the subject of future work.

D. Computational performance

Computational complexity of the proposed model is mostly
sensitive to the number of integer variables. As shown in Fig.
5, the number of integer variables grows substantially with the
number of time steps. However, the number of price scenarios
does not affect the number of integer variables.
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Figure 5. Integer variables in the problem versus number of time steps.

Fig. 6 shows the time required to solve the problem as a
function of the number of time steps and price scenarios. These
results were obtained in GAMS 24.6.1 using Gurobi solver
on a 64-bit Windows computer with an Intel(R) Core(TM) i5-
5300U CPU @ 2.30 GHz. The analysis shows a low sensitivity
of computational time with respect to the number of scenarios
while a high sensitivity to the number of time steps.
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Figure 6. Effect of the number of time steps and scenarios on the computa-
tional time, expressed in seconds on a logarithmic color scale.

In particular, a problem defined on 8 time steps corresponds
to an optimization horizon of 2 hours with a 15-minute
resolution, in line with the specifications in the EcoGrid 2.0

balancing market [14]. In this case, an optimal solution was
found in a matter of seconds. If the problem was to be solved
every 15 minutes, this would be a feasible solution time.

V. CONCLUSIONS

This paper presents a stochastic mixed-integer linear op-
timization problem for the offering strategy of a flexibility
aggregator participating in a balancing market using asym-
metric block offers. The flexibility of the aggregated load is
modelled using a saturation curve, and balancing market price
forecast scenarios are used for deriving an optimal solution
under uncertainty. Risk-aversion of the aggregator is accounted
for using the CVaR risk metric.

A case study is used to derive the offering strategy of the
aggregator using sample saturation curve and price scenarios.
The effect of different risk preferences is demonstrated and
analysed, and the role of asymmetries and non-linearities in
the load-shifting characteristics is discussed. Computational
performance is also analysed, and it shows that using the
offering strategy tool for participating in a real-time balancing
market is feasible without heavy computational requirements.

We showed however that the expression of risk preferences
is limited in the study case that was analysed. Limiting factors
were identified as: the reduced amount of offering options
due to the small amount of time steps in the optimization
horizon, the lack of strategic design of offering prices, as
well as the reduction of the aggregated flexible loads to a
single cluster. Future work may thus include extensions of the
problem to derive price-quantity offer curves, which would
allow aggregators to offer different levels of quantity at in-
creasing prices. The effect of dividing the portfolio of flexible
assets in multiple clusters may also be investigated, as well as
alternative solution methods for reducing the computational
time of the problem with a substantially higher number of
time steps.

In addition, the potential price-making behavior of a strate-
gic aggregator in an imperfect competitive balancing market
is of interest to investigate. Uncertainty in the characteristics
of the flexible assets may also be considered, and the effect
of asymmetries and non-linearities in the load-shifting spec-
ifications could be analysed in further detail. Finally, real-
life implementation of this offering strategy tool will yield
interesting insights.

APPENDIX
MIXED-INTEGER LINEAR EQUIVALENTS

Equations (2a) and (2b) are implemented with the follow-
ing mixed-integer linear constraints, using auxiliary binary
variables defined in (10), and with P the maximum instant
regulation power that can be provided by the aggregator, in
absolute values:

qresp
tt′ − p

resp
t′ ≤ P

(
1− u0

tt′ + u1
tt′
)
, ∀ (t, t′) ∈ T 2, (9a)

qresp
tt′ − p

resp
t′ ≥ P

(
u0
tt′ − u1

tt′ − 1
)
, ∀ (t, t′) ∈ T 2, (9b)

qresp
tt′ ≤ P

(
u0
tt′ − u1

tt′
)
, ∀ (t, t′) ∈ T 2, (9c)

qresp
tt′ ≥ P

(
u1
tt′ − u0

tt′
)
, ∀ (t, t′) ∈ T 2, (9d)



qreb
tt′ − preb

t′ ≤ P
(
1− u1

tt′ + u2
tt′
)
, ∀ (t, t′) ∈ T 2, (9e)

qreb
tt′ − preb

t′ ≥ P
(
u1
tt′ − u2

tt′ − 1
)
, ∀ (t, t′) ∈ T 2, (9f)

qreb
tt′ ≤ P

(
u1
tt′ − u2

tt′
)
, ∀ (t, t′) ∈ T 2, (9g)

qreb
tt′ ≥ P

(
u2
tt′ − u1

tt′
)
, ∀ (t, t′) ∈ T 2. (9h)

In addition, we define:

u0
tt′ =

{
1 if t ≥ t′

0 otherwise,
∀ (t, t′) ∈ T 2, (10a)

u1
tt′ =

{
1 if t ≥ t′ + τ resp

t′

0 otherwise,
∀ (t, t′) ∈ T 2, (10b)

u2
tt′ =

{
1 if t ≥ t′ + τ resp

t′ + τ reb
t′

0 otherwise,
∀ (t, t′) ∈ T 2, (10c)

u3
tt′ =


1 if t ≥ t′ + τ resp

t′

+ τ reb
t′ + Trec

0 otherwise,
∀ (t, t′) ∈ T 2. (10d)

Equation (11) below provides a mixed-integer linear equiva-
lence for (10a)-(10d), with µ a relatively small value defined
as (T + 1)−1:

u0
tt′ ≥ µ (t− t′ + 1), ∀ (t, t′) ∈ T 2, (11a)

(1− u0
tt′) ≥ µ (t′ − t), ∀ (t, t′) ∈ T 2, (11b)

u1
tt′ ≥ µ (t− t′ − τ resp

t′ + 1), ∀ (t, t′) ∈ T 2, (11c)

(1− u1
tt′) ≥ µ (t′ + τ resp

t′ − t), ∀ (t, t′) ∈ T 2, (11d)

u2
tt′ ≥ µ (t− t′ − τ resp

t′ − τ
reb
t′ + 1), ∀ (t, t′) ∈ T 2, (11e)

(1− u2
tt′) ≥ µ (t′ + τ resp

t′ + τ reb
t′ − t) ∀ (t, t′) ∈ T 2, (11f)

u3
tt′ ≥ µ (t− t′ − τ resp

t′

− τ reb
t′ − Trec + 1), ∀ (t, t′) ∈ T 2, (11g)

(1− u3
tt′) ≥ µ (t′ + τ resp

t′

+ τ reb
t′ + Trec − t), ∀ (t, t′) ∈ T 2. (11h)

Equations (12) are mixed-integer linear equivalent of (4):∑
s∈S

vresp
ts = 1, ∀ t ∈ T , (12a)∑

s∈S
vreb
ts = 1, ∀ t ∈ T , (12b)

presp
t =

∑
s∈S

(vresp
ts Ps), ∀ t ∈ T , (12c)

preb
t =

∑
s∈S

(vreb
ts Ps), ∀ t ∈ T , (12d)

τ resp
t =

∑
s∈S

(vresp
ts Ts), ∀ t ∈ T , (12e)

τ reb
t =

∑
s∈S

(vreb
ts Ts), ∀ t ∈ T . (12f)

Finally, (6)-(7) are replaced by the following mixed-integer
linear constraints, with τ resp

t , τ reb
t ∈ N+:

τ resp
t +τ reb

t ≤ (T−t+1)

(
1−

t−1∑
t′=1

(
1−u3

tt′
))
, ∀ t ∈ T . (13)

It is worth mentioning that constraint (13) may perform poorly
if the parameter Trec takes a value above 1, due to the
construction of the state variables u3

tt′ in the set of constraints
(11). An alternative formulation would be to define Trec as
dependent on the shape of the blocks’ parts, so that it takes
the value zero for a block that follows an empty shape.
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