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Abstract—We present a real-time optimization strategy based
on warm-start for solving a moving horizon of multiperiod
AC optimal power flow (ACOPF) problems. In each horizon,
ACOPFs are temporally interlinked via generator ramp con-
straints, and we assume that each horizon needs to be solved
every few seconds or minutes. We introduce two approximate
tracking schemes that closely follow a solution path consisting of
strongly regular points. We present theoretical results bounding
the tracking error by the square of the parameter changes
between time periods. Experimental results for networks of sizes
up to 9K buses show a fast computation time while maintaining
a good solution quality, thus making our approach well suited
for real-time circumstances.

Index Terms—multiperiod AC OPFs, real-time optimization,
moving horizon, parametric optimization

I. INTRODUCTION

In a multiperiod AC optimal power flow (ACOPF)
model [1], [2], [3], [4], [5], we optimize inter-temporally
coupled ACOPF problems over a time horizon consisting
of multiple time periods: an ACOPF containing network
AC power balance and flow limit constraints is defined at
each time period, and ACOPFs in different time periods are
coupled through time-coupling constraints specifying physical
requirement over time, such as generator ramp rate and energy
storage state. These temporal constraints enable us to model
the effect of the current decision on future system state and
decisions. Under these domain and temporal constraints, the
model seeks an optimal generation dispatch for the current
time period that is optimized over a time horizon.

The control feature of the multiperiod model — taking
into account the impact of the current decision on future
decisions — plays an important role in scheduling a reliable
and economical generator operation over a time horizon [2],
[4]. This feature is especially critical in emergency situations,
such as a loss of a large generator, where we should provide
a reliable generator operation satisfying load until the system
recovers to its normal state. For example, in emergency, a
spinning reserve starts to be used to make up for insufficient
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generation, which leaves less headroom for generator capacity.
In this case, considering just a single time period may result
in some generators being close to their capacity. Subsequently,
at the next time period other generators may be required
to generate more than their ramp rate, which leads to an
infeasible generator operation. The multiperiod model that
takes into account generator ramp rate can avoid this situation
and provide a reliable generation dispatch.

Mathematically, the multiperiod problem considered in this
paper is defined as follows:

Z Z fg(pt,g)a

minimize
Vt,i,0t,0,Pt,9,qt,9

teT geg
subject to
Z Prg—dy; = Z Dtk + Z Peki + 95074,
9€G; (i,k)eL (ki)eL
Z Grg —di; = Z Gtk + Z Gt.ki — bjv7 4,
9€G; (i,k)eL (ki)eL

vVt e T,Viec B,

Prik = 95Vt i + Veivek(gik co8(Op k) + bik sin(0y k),
ik = U507 5 + veive ke (gik Sin(0y,ik) — bik cos(0pix)),
Ptki = G5V s + Vt,iVe k(i €08(01 ki) + bri sin(6y x:)),
Ge.ki = =007 1, + VeV k (Gri SN (01 ki) — bri co8(61 k7))

Ot =01 — 011, O i = 0rk, — 0,5,Vt € T V(i k) € L,
\/m < sk, VteT,V(ik)eL,
\/m < Ski,

|Di+1,g — Pl < 7g,

YVt e T,V(i,k) € L,
vt e T\{T},Vg € G,

v, S v S UG, vt € T,Vi € B,
0; <0 <0, Vi e T,Vi € B,
P, < Ptg = Py YVt e T,Vg € G,
4, = Qg =g, vteT,Vgeg.

(1

In (1), 7,B,G, and L denote the sets of time periods,
buses, generators, and branches, respectively. The set 7T is
assumed to be {1,...,T} representing a sequential order of
time periods. G; denotes a set of generators connected to
bus 4. For each (i,k) € L, i is a from-bus, and k is a
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to-bus. Parameters g5}, Gik, 9%;» Gki»> b5y, Uik, by, and by, are
from complex admittance matrix containing the complex series
admittance and branch shunt, ¢ and b are from bus shunt, s;;,
and sy; are apparent power limits, and d} ; and dgi represent
the loads for real and reactive power at bus 4 at time period ¢,
respectively. Variables, vy ;, 0y,i,Dt,g, and g¢ 4, contain voltage
magnitude, voltage angle, real power, and reactive power
values at each bus or generator at time period ¢, respectively.

In this paper, we consider a real-time optimization strategy
for solving a moving horizon problem of multiperiod AC
optimal power flows (MPACOPFs). Specifically, we solve a
single time horizon consisting of an MPACOPF with a fixed
length of time periods, |7| = 7. The horizon then moves
forward one time period with a new load corresponding to
the incoming time period, and we repeat the procedure. We
aim for a fast approximate computation strategy that exhibits
a good solution quality so that it can provide an accurate
solution feedback for each horizon in real time, defined here
to be less than a second for smaller networks of sizes up
to 300-bus or less than two minutes for larger ones of sizes
up to 9K-bus when 7" = 10. As we describe in Section IV,
our computation time is comparable to the one for real-time
optimization of a single period OPF [6]. This fast computation
time is critical in an emergency where the restoration phase
should establish a reliable and economic generator operation
quickly within a specific time limit. Our real-time strategy will
enable fast deployment of the model and to reflect the most
recent information about load as time goes.

To achieve real-time performance, we introduce a tracking
scheme combined with warm-start. Our scheme exploits (i) the
solution overlap of two consecutive horizons by warm-start
and (ii) the real-time requirement where parameter changes,
such as load changes, are expected to be small between
adjacent horizons.

Specifically, we present two warm-start methods exploiting
the solution at the previous time horizon to generate a good
initial point for the current time horizon. An error analysis
based on the Karush-Kuhn-Tucker (KKT) conditions provides
insights into factors dominating quality control and criteria for
selecting the warm-start method.

Moreover, we accelerate computation further by approxi-
mately following a solution manifold consisting of strongly
regular points [7]. Based on our previous work [8], we present
theoretical results showing that a quadratic programming (QP)
solve (sometimes, only one Newton iteration of perturbed
KKTs) may be enough to have an approximate solution whose
error is bounded by the square of the parameter changes at the
last time period. Experimental results are given for networks
of sizes up to a 9K bus system demonstrate the real-time
performance of our approximate tracking scheme.

The rest of the paper is organized as follows. Section II
introduces two different warm-start methods with their KKT
error analysis. Section III presents our approximate tracking
scheme and shows that its errors are bounded to the square
of parameter changes between time periods. Computational
results are described in Section IV, and Section V concludes

the paper. We note that due to space limitation we omit all our
proofs. Interested readers are referred to [9] for the proofs.

II. WARM-START

In this section, we introduce our two warm-start methods
for real-time computation of MPACOPFs along with their
error analysis. We start with our abstraction of the AC polar
formulation (1) for analysis purposes.

mingmize Z f(zy),

” teT

h(zy) =di, VEET,

clxy) <0, VEeT,

Tiy1,g — Tt,g = St.g, VL ET\{T}, Vg €G,
<z <u® VteT,

I° <s <u®, Vi e T\{T},

where variables at time period ¢ are encapsulated in x;. We
assume that the first |G| elements of x; correspond to the real
power generator variable p; ¢, i.e., Tt = Pt g, Vg € G. The
objective function f(x;) represents the aggregated generators’
cost at time period ¢. The constraint h(-) corresponds to the
power balance equations satisfying the given load denoted by
ds, and c¢(-) encapsulates the line flow limits. The ramping
values are identified with variable s;, denoting a vector of
variables s; ,’s, and the ramp limit is represented by its lower
and upper bounds. We note that the objective function and
constraints are time invariant. This feature will be exploited
in our warm-start.

Since the problem (2) is nonconvex (mainly because of
the nonlinearity of the power balance equations), we find its
solution by computing a stationary point, where there are no
feasible descent directions for the gradient of the objective
function. Under suitable constraint qualifications, such as
the linear independence constraint qualification (LICQ) or
Mangasarian-Fromovitz constraint qualification (MFCQ) [10],
this is equivalent to finding a point satisfying the KKT con-
ditions as described in (3) below. We call such a primal/dual
pair a KKT point. We sometimes omit the dual part when
we specify a KKT point. Throughout this paper, a solution is
assumed to be optimal if it is a KKT point.

subject to

2

Vf(l’f) + Vh(It)At + VC(CCt),LLt

FWi(w) — 20t 2P =0, VteT, (3a)
—wy— 22 =0, Ve T\{T}, (3b)
h(zy) —dy =0, VteT, (3¢)

Tip1,g — Teg —St,g =0, Vte T\{T},Vgedg,
(3d)
0< —c(ay) Lpu >0, VteT, (3e)
0< (2 —1%) L 281 >0, VteT, (3f)
0< (u®—m) L 27" >0, VteT, (3g)
0< (s¢—1°) L 2t >0, VteT\{T}, (3h)
0<(u®—s¢) L 2" >0, Vte T\{T}, (31)

21st Power Systems Computation Conference

Porto, Portugal — June 29 — July 3, 2020

PSCC 2020



where

E(—wy) ift=1,
Wt(w) = E(wt_l - wt) ift € T\{l,T},
E(wr-1) ift =T, 4)

E= [é] , I :a|G|-by-|G| identity matrix

Note that the complementarity notation 0 < a L b > 0
implies that a,b > 0 and Zl a;b; = 0. wy 4 is a multiplier for
the ramp constraint of generator g between time periods ¢ and
t + 1. If the ramping is not binding, that is, lf’g < Spg < uf}g,
then zf; = 2, = 0 from (3h) and (3i). Thus w;y = 0
from (3b) in this case. Otherwise, w; 4 takes either a nonposi-
tive or a nonnegative value depending on the ramp constraints
being bound at its lower or upper limit, respectively.

A. Construction of a warm-start point

We consider an initial point computation for the second time
horizon problem. For future time horizons with a starting time
period ¢t > 3, we recursively apply our method based on the
solution of the previous time horizon problem.

For the second time horizon problem, we need to modify its
problem structure to incorporate the ramping decisions made
in the first time horizon. Assume that (57,5,5\,;1,(1),2"”,25)
is a solution to (3) for the first time horizon. The second
time horizon problem is constructed by shifting and moving
forward in time (thus the first time period goes away) and
introducing a new time period (74 1) at the end with its load
dr41. Although there is no time period 1, its ramp constraints
should be satisfied since the generators are assumed to have
operated with the value of Z; 4. Note that for a fixed value
of 7,4 the ramp constraint is nothing but a bound constraint
on x 4. Therefore, we update the lower and upper bounds of
T2, 4 to incorporate the ramping decisions:

I3, = max(ly ,, T1,4 + 1),
X 3 X bt S (5)
uj , = min(uj ,, &1, + ug).

Based on the modifications, we construct our warm-start
point by first forming a KKT point for the smaller horizon
{2,...,T} problem and then choosing appropriate values for
the new variables for time period (T + 1).

With the updated bounds on x5 and by the Bellman’s princi-
ple of optimality, one can easily verify that (Z2.7, 52,(7—1)) is
an optimal solution to the smaller horizon {2, ..., 7'} problem.
However, the existing multipliers (A, i, w, 2%, 2°) may not
satisfy the KKT conditions since w; is no longer available.
Specifically, Wa(w) = F(w;—ws) is now changed to E(—ws).
If @, # 0, then (3a) is not satisfied for ¢ = 2. Since w works
as if it is a multiplier on a bound constraint for a fixed real
power generation, we can easily fix this by absorbing the value
of @; in the dual variable zJ using the following update rule:

~x,l - p o~ . )
sal _ { Pl —wig i Tag =314+,
2,9 5% ;
Zq otherwise, ©)
o |~ e~ s
STU { 229 twig if T2,9 = T1,9 + Ug,
f2,9 =

% .
Z5q otherwise.

Note that the changes made in (6) do not affect other KKT
conditions except for (3a), (3f), and (3g) since z* is not an
intertemporal variable. Also, the newly updated values are
nonnegative. For example, if T2y = Z1 4 +lig, 51,4 1s binding
at its lower bound I3 ;, then by (3i) we have 2/ = 0.
Therefore, —&1,, = Zflg > 0 by (3b). Similarly, we have
wig = 0 when Ty 4 = Z14 + uf,g. The update rules (5)
and (6) will be used again later for the time period (7" + 1)
to perform sensitivity analysis.

Proposition 1 shows that the update rule (6) also enables
the complementarity conditions to hold so the resulting point

is a KKT point with respect to the horizon {2,...,T}.

Proposition 1. Let (i,é,j\,ﬁ,oﬁji,és) be a KKT point of
the initial horizon {1,...,T} problem. With the update rules
of (5) and (6), the point (Z,5,\, fi,w, 2%, 2°) restricted to the
horizon {2,...,T} is a KKT point.

We now introduce our two initialization methods for com-
puting the starting values for the new variables at time period
(T+1).

Our first method initializes (w741, Ary1, 711,25, 1) by
duplicating the values from time period 7. Other variables are
initialized in a way that is consistent with those variables. We
set the values of the ramping related variables to zero since
the real power generator variable values are duplicated from
the previous time period. In this case, ramping is not binding
between time periods T and (T + 1).

This method is based on the intuition that if the change of
the load is small between the two time periods T" and (T +1),
then a solution to time period (T + 1) may be found near the
previous one, a fact that we prove below.

Our second method sets the initial values of the new
variables to a solution obtained from solving a much smaller
subproblem: a single period optimal power flow (SPOPF)
problem consisting of only the variables at time period (7'+1).
This scheme is similar to the warm-start method of [11] in
the context of model predictive control (MPC), although here
we enhance the method by providing a sensitivity analysis
stemming from the KKT residuals in Table I (with proofs in
the Appendix [9]). When we formulate the subproblem, we
place the ramp constraints in the form of the bound constraints
on zr4; as in (5), or we replace x7 with a constant 7 in
them. For the latter, the subproblem will be as follows:

minimize  f(x),
T,

subject to  h(z) = dry1,
c(z) <0, (M
Tg—Frg =54, Vg E€G,
lfgxgu””,l;gsggug, Vg € G.

To accelerate its computation time for solving (7), we
initialize its variable values to the values of the previous period
variables, as the duplication method does.

The rationale for the SPOPF approach is (i) to compute
a feasible primal initial point and (ii) to obtain an optimal
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TABLE I
INITIAL KKT RESIDUALS OF OUR WARM-START METHODS.

Method
Duplication
Single period OPF

Initial error
[Adr(| + [lor—1]l
llor|

solution without solving the MPACOPF in the case where
ramping is not binding in (7). In contrast to the duplication
method, the SPOPF method finds a feasible primal point by
solving (7). This may provide a better starting point when
the load changes are not small. Regarding (ii), if the ramping
is not binding, then it implies that the solution of (7) is
independent of the previous time periods. Therefore, a solution
to the MPACOPF is simply a concatenation of the previous
solution and a solution to (7), that is, z* (Zo.7,2) and
s* = (82.(r—1),8). For large examples, we may be able to
save significant computation time in this case. The correctness
of the solution will be verified in our error analysis later in
this section.

Problem (7) might be infeasible, especially when the load
change is large and the ramp limit is tight. In this case, we
currently re-solve the problem without the ramp constraints.
This still provides useful information: 1) if it is infeasible again,
then it implies that the MPACOPF problem is infeasible; (ii)
otherwise, we have a feasible point for the new load so that we
can warm-start and perform sensitivity analysis to evaluate the
quality of our approximate scheme, as described in Section III.

B. KKT residual analysis of our starting points

The errors of our warm-start methods can be analyzed by
computing their violations of Equations (3a) and (3c). Both
initialization methods satisfy other equations by the way their
values are constructed.

For the duplication method, the main source of error is the
infeasibility of the power balance equation (3c) for the new
load d741 and the multiplier for ramping W1 (wr) in (3a).
Clearly, equations of (3) are satisfied up to time period 7' since
we shifted the previous solution in time. Although W (w) has
changed from E(wp_1) to E(wr_1 — wr), we set wyp = 0;
hence (3a) is satisfied at time period 7'. For time period (7" +
1), h(zr4+1) = h(Zr) = dr. Thus the violation is Adr :=
dr41—dr. In the case of (3a), we have W (w) = E(wr) =
0. Since the equation was satisfied with E(&7_1), the error
is [|@7—_1||- In summary, the total error is ||Adr]|| + ||&7-1]|-
Note that if wr_; = 0 (meaning that ramping is not binding
between time periods (7' — 1) and T'), then the error is due
solely to the load change.

For the SPOPF method, the error may arise from the term
wr from the solution of (7). With the same analysis as for
the duplication method, the error is ||&r||. This implies that if
ramping is not binding between time periods 7" and (7" + 1),
that is, wr = 0, we can find a solution by just solving (7).
Table I summarizes the errors of our initialization methods.

We make two observations based on our error analysis: (i)
in addition to the load changes, only the ramp constraints
contribute to the errors; and (ii) among the ramp constraints

the ones in the tail (corresponding to time period (7" — 1)
and thereafter) determine the quality of our warm-start points.
The first observation is intuitive and expected since only ramp
constraints are intertemporal and link variables in different
time periods. In case (ii), the error depends only on the load
changes and the binding of the ramp constraint of (7). Thus,
we may expect fast performance of our warm-start if the real
power generator operation has enough margin with respect to
the ramp limits in the tail.

III. APPROXIMATE METHODS

So far, we have assumed that a solution is to be computed to
its optimality with respect to (3). In a real-time environment,
however, where MPACOPF problems with a new load arrives
every few seconds or minutes, this requirement may be too
strong. Especially when the problem size is large, computing
an exact solution may be much slower than the arrival interval
of new problems so that operation may not be possible in
a timely manner. While warm-start shows significantly faster
performance than cold-start, as reported in Section IV, its
computation time still may be too slow in this environment.

Instead of computing an exact solution for each time hori-
zon, our approach is to try to approximately track the solution
manifold by solving a truncated linear generalized equation
(equivalently, a truncated quadratic program), which will be
defined in Section III-A. Our warm-start point will be used
as an initial point when we compute an approximate solution.
Under some regularity assumptions, we show that the tracking
error is bounded to the second order of the parameter changes.
We emphasize that the parameter changes consist of only the
changes in the last time period due to our warm-start. This is in
comparison with the case where we do not shift the values in
time. In that case, the parameter changes will involve the load
changes of the whole time periods. Through experiments, we
demonstrate that each approximate solution is computed fast
enough to work in a real-time environment, while maintaining
a good solution quality in a well-defined sense.

To analyze the quality of our approximation scheme, we use
the theoretical results of strongly regular generalized equations
(GEs) [7], [12]. Roughly speaking, the GEs represent a geo-
metric version of the KKT conditions so that we can translate
analytical results on the GEs into the ones on the KKT
conditions. Strong regularity guarantees the desired behavior
of GEs being stable to small perturbations. This property will
be used to bound the distance between an exact solution and
our approximate solution.

A. Strongly regular generalized equations

Under an appropriate constraint qualification, the first-order
stationarity conditions of the following optimization problem
with a given parameter p:

minimize  f(p, x),
xr

subject to  h(p, ) , 3
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can be written as
0€ F(p,z, A\, ) + Nk (, A, ), 9)

where

—h(p,l') 5
—9(p; )
(x, A\, p) € K :=R" xR? x RY.

F(p7x7A)/J/) =

(10)
and

Ni(y) = if yelkK,

if y¢K.
(1D
(9) is called the generalized equation (GE) [12], and (11) is a
normal cone to a closed convex set K at a point y = (z, A, ).
One can easily verify that a KKT point of (8) is a solution
to (9) and vice versa under a suitable constraint qualification.
For clarity of our analysis, we encapsulate all the pri-
mal/dual variables in y and parameters in p. In our case,
parameter p represents the load and the lower/upper bounds
of the real power generator variables at the first and last time
periods. We note that the ordering of time periods is relative
to the horizon; that is, if we are given the second time horizon
problem, then the first period of it corresponds to time period
2 in the absolute sense.
Our problem is then equivalent to solving the following GE
for a given parameter p:

0€ F(p,y) +Nk(y).

{ é2|<z,v—y> <0, e K}

12)

We are interested in the behavior of a solution of (12) near a
point (po, yo) subject to small perturbations of the parameter.
To this end, we study the properties of its linear generalized
equation (LGE) defined at (pg, yo) [7]:

T(y) := F(po,yo) + VyF(po,¥0)" (v — vo) + Nk (y). (13)

Strong regularity [7] plays a critical role in enabling the so-
lution to be well behaved. If it holds at a point (pg, yo), then we
can bound the distance between its neighboring points. Let us
define a residual by 7(p, y) := F(po, yo) + VyF (o, y0) (y —
o) — F(p,y) and y; € (T~ N V)(r(psys)) for i = 1,2,
where V' is some neighborhood of the origin. Then the distance
between y; and ys is bounded by Ly ||7(p1,y1) — r(p2, y2)||
with L., being a local Lipschitzian constant of 7". We note that
r(po,yo) = 0; therefore, the residual is small around (po, yo)-
Combined with the KKT residual size analysis in Table I, the
correspondent of » when moving from GEs back to KKT, this
provides a mechanism for bounding the distance between an
exact and an approximate solution.

In the case of an optimization problem (8), sufficient condi-
tions are given in [7, Theorem 4.1] for the corresponding GE to
be strongly regular: if LICQ and strong second-order sufficient
conditions (SSOSCs) hold at a point (pg, yo), then it is strongly
regular there. Since SSOCSs are assumed for virtually any
algorithm for nonlinear programming, strong regularity of GEs
requires no further assumptions compared with most other

analyses. Note that when there are no degenerate indices, that
is, there are no i’s satisfying g;(z) = 0 and u; = 0 with y;
being a multiplier for g;, the SSOSCs become equivalent to
the second-order sufficient conditions.

B. Approximately tracking a solution manifold consisting of
strongly regular points

Strong regularity allows us to obtain a good approximation
to a solution of nearby GEs by solving its associated LGE, a
QP problem in our case. In [7, Theorem 2.3], it was shown
that if (12) is strongly regular at (pg, yo) and V, F is Lipschitz
continous in both arguments, then for p near p; the distance
between a solution y(p) to (12) and a solution to the following
LGE

re € F(p,yo) + Vy F(po,v0)" (v — vo) + Nk (y),

with 7. = 0 is bounded to the second order of ||p — pol|.
In [8, Theorem 4.1], the result was extended to hold for r. =
O(|lp — pol|?) so that a solution to a truncated LGE is enough
to maintain a good solution quality.

Furthermore, in [8, Theorem 4.2] the authors showed that
we can maintain stability of the tracking error: if y, is a
solution to (14) defined at g, (called a reference point) close to
a strongly regular point yo with ||go —yo|| < ¢ for some 6 > 0
in O(||p—pol|?), then we will have ||y, —y(p)|| < &. Recursive
application of this result, assuming that each exact solution
y(p) is strongly regular, implies that we can maintain stability
of the errors to the second order of the parameter changes. The
result also indicates that we can use ¥, as our next reference
(at which an LGE is formed) point to construct (14).

Based on these results, our approximation scheme first
computes a warm-start point from the previous solution by
shifting it in time and applying one of our warm-start methods,
followed by the resolution of a truncated LGE (14), and
continuing this procedure recursively in time. In the case of
the first time horizon problem, where no previous solution is
available, we solve it exactly.

To show the tracking stability of our approximation scheme,
however, we do not directly apply the existing results since
our reference point is constructed via shifting in time from the
previous solution. Specifically, we do not have a guarantee that
our reference warm-start point is also strongly regular and that
it maintains the distance from the exact solution after shifting.
We need to extend the results to take into account the shifting
in time.

To this end, we first show that if yq is strongly regular
with parameter pg, then its shifted version gy with pg is also
strongly regular. We then prove that if ||y, — y(p)|| < ¢
for some & > 0, then its shifted version also maintains the
distance, that is, ||g, — g(p)|| < 4. Based on these two
results, the tracking error of the approximation scheme with
our warm-start methods is shown to be bounded to the second
order of the parameter changes. Note that these results hold
independent of the time horizon length 7.

Propositions 2-3 below present our theoretical results for
the duplication method. For the SPOPF method, a separate

(14)

21st Power Systems Computation Conference

Porto, Portugal — June 29 — July 3, 2020

PSCC 2020



statement and its proof [9] are needed because its initialization
procedure is different. In the propositions, we define a param-
eter for (2) to be p = (Iy,u1,lr,ur,dy.7), where (Iy,uq)
and (I7,ur) denote the lower/upper bounds of the real power
generator variables at the first and the last time periods in a
horizon in the relative sense, respectively, and d; represents
the load at the ¢th time period in the absolute sense.

Proposition 2. Suppose that LICQ and SSOSCs hold at
(Z,5,\ fi,0, 2%, 2%) with parameter p = (I1, Uy, I, Ur, dy.T)
Sfor (2). Let (&,35, 5\7;2,03,21,25) be the shifted warm-start
point of the duplication method with its shifted parameter
]5 = (ll,’al,lT,ﬂT,dg;T,dT), where (ll,ﬂl) and (lT,ﬂ,T)
are obtained by applying the update rule (5) using 1,4
and T7_1 4, respectively, and z% is updated accordingly by
using the update rule (6). Then the warm-start point is a
solution to (2) with parameter p. Furthermore, if (i) the vectors
[V.h(z) Vica(z)] are linearly independent, where h(x)
is a duplicate of h(x) excluding the real power generator
variables and A denotes the set of indices of the active
constraints of ¢; and (ii) for each t € {1,...,T — 1} and
g €G, Tyt1,9 and 5.4 are not active simultaneously, then it
is a strongly regular point.

Note that the shifted parameter p in Proposition 2 may not
correspond to the actual parameter values we need to use for
the problem; the load at the last time period and (Ir, @) may
be different from the actual values, for example dr # dpyq
and I, 4 # U7, ;. These values are selected purely for sensitivity
analysis purposes.

Proposition 3 shows that the shifting in time via duplication
maintains the distance. In this proposition we use the infinity
norm, ||y — z||le := max; |y; — 2;|. Since the L, Lo and the
infinity norms are equivalent, the result holds for other norms.

Proposition 3. Suppose that ||y — z||c < 0 for some & > 0.
Let iy and Z be their shifted versions obtained by applying the
duplication method, respectively. Then ||§ — Z||oo < 6.

We prove that the tracking error originated from computing
an approximate solution is stable.

Proposition 4. Assume that (2) is strongly regular at yo with
parameter pg. Let iy be a reference point in the neighborhood
V' of yo (where the single-valued inverse function T~ NV
is mapped) and y, and y(p) be solutions to the truncated
LGE (14) defined at yo with parameters py and p and the
GE with parameter p, respectively. Assume that the associated
residuals satisfy ||r(po, Jo) — (po, yo)|| < 0, with 6, > 0 and
5. € O(||Ap||?), where Ap = p — po, and there exists . > 0
satisfying ||re|| < Oc. If there exist k > 0 and Ap satisfying

a1]|Aplld, < sl Ap|P?,

(15)
(a2 + )| Ap|* + 0 < asdr,

where o, o, and a3 are defined in the Appendix, then the
tracking remains stable:

=

150 = yoll < Ly, 1y — y(P)I| < Ly6:.

TABLE 11
STATISTICS OF DATA SET WITH T" = 10.

Data # Vars # Constrs Line (fr, to) Generator

9 250 376 4,5) 2

30 710 1,454 6, 10) 2

118 3,430 2,846 (24, 70) 89
RTS-GMLC 4,300 7,584 (101, 103) 101
300 7,370 6,621 (9005,9051) 76
1354pegase 32,270 58,060 | (5019, 9112) 5490
2383wp 52,880 108,503 (346, 10) 18
9241pegase | 213,710 323,705 | (2169, 3124) 6857

Summing up, by Proposition 2 strong regularity is preserved
under the duplication method. Proposition 3 guarantees that
the distance will be within the same bound between the
exact and approximate solutions via our duplication warm-start
method. Proposition 4 shows that this recursive approximate
LGE is stable: the tracking error (if initially small enough) is
maintained and bounded by the second order of the parameter
changes. By recursively applying the argument, we can keep
track of the approximate manifold while the moving horizon
with errors bounded by the second order of the parameter
changes.

We note that the parameter changes involve two compo-
nents: (i) the load changes between time periods 7" and (7T'+1),
and (ii) the distance from the actual bounds of the real power
generator variable at time period 7. The values of these
two components can be controlled by the sampling rate (the
time difference between adjacent time periods) and the ramp
rate (the bound on variable s). The faster and the larger the
sampling and ramp rates are, respectively, the smaller those
two components are.

A similar argument holds for the SPOPF method as de-
scribed in the Appendix [9]. In this case, we point out that
the parameter changes have a single component, the distance
from the actual bounds so it can be controlled by the ramp
rate. Therefore, we may have tighter bounds between the exact
and approximate solutions at the cost of solving the SPOPF
problem.

IV. NUMERICAL RESULTS

In this section, we present computational results of our
warm-start and approximate tracking methods described in
Sections II and III, respectively. Table II' shows the statistics
of the MATPOWER [13] and RTS-GMLC [14] (a modified
version of RTS-96) data used to construct the MPACOPF
model (2). We fix the length of the time horizon to 7" = 10,
and each time period corresponds to a minute.

For our experiments, we assume an emergency situation
where either a line or a generator has been off and, as a
response, a moving horizon of the MPACOPF models is to be
solved for emergency generator operation with 7' = 10 and
H = 20, where H represents the number of times the time
horizon moves forward one time period at a time. Therefore,

IThe numbers of variables and constraints correspond to the case where a
line has been off. They are similar in the generator-off case.
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Fig. 1. 30-min load scale profile.

we provide a generator operation for the next 10 minutes for
each time horizon, resulting in a total of 30-minute operation.

We chose a unit to turn off from a solution of an ACOPF
problem, equivalently, an MPACOPF model with T = 1. To
cut a non-redundant line, we chose a line having nonzero
power flows at the solution. In the case of a generator, except
for the 300-bus and RTS-GMLC cases?, we chose the one
with the largest real power. The last column of Table II shows
the unit to turn off in each case. We note that the number
in the generator column indicates the bus to which the offed
generator was connected.

Our load data has been generated by multiplying a 30-min
load scale to the load included in the original data. Hence,
the proportion of the load among buses is the same as the
given load proportion in the data file. Only the total load
changes following the load scale. Figure 1 depicts our load
scale profile. It has been generated from a five-minute system
load profile for Oct. 2, 2018, obtained from the ISO New
England website [15]. From the load profile, we picked 7:00
PM as our start time and computed the relative load scale
for the next 30 minutes with one-minute granularity through
interpolation. We note that the load dropped 1.5% from the
start time over 30 minutes in this case.

We set the ramp rate to a value in a range from 0.04% to
1.0% per minute, except for RTS-GMLC data.> Our choice of
ramp rate may be much smaller than the values currently being
practiced in normal situations, but we chose it (a) to make sure
that the ramp constraints are binding at our solution of the
MPACOPF model and (b) in preparation of a future where
the dispatchable ramp capacity is limited, as averaged over
the entire system. If (a) does not occur, the SPOPF method
will easily find an optimal solution, as discussed in the error
analysis of Section II-B.

For the experiments of our approximate tracking scheme,
we implemented a QP formulation of (14) and experimented
with two versions of it: (i) solve it exactly (r. = 0); and
(ii) solve it approximately (r. > 0) by setting the maximum
number of iterations of the solver to a fixed number.

2The problem became infeasible when we chose the largest one in the 300-
bus and RTS-GMLC cases. To avoid infeasibility, we chose the largest one
among generators which output up to 100MW at the solution.

3The ramp rate was given in the RTS-GMLC data file, and the ramp
constraints were binding at a solution with it. So we used the given ramp
rate.

TABLE III
PERFORMANCE COMPARISON BETWEEN COLD- AND WARM-START
WHEN A LINE HAS BEEN OFF.

Data Average # Iterations and CPU Time in Sec
Cold-start Duplication SPOPF
9 52.68, 0.11 5.05, 0.01 2.00, 0.01
30 39.16, 0.37 8.63, 0.11 3.63, 0.06
118 28.05, 1.14 3.37,0.13 1.74, 0.11
RTS-GMLC 44.79, 1.85 10.84, 0.66 8.11, 0.43
300 85.58, 8.82 5.58, 0.57 3.16, 0.43
1354pegase 61.95, 51.35 6.68, 5.82 4.74, 4.86
2383wp | 70.58, 147.22 19.74, 46.31 17.05, 41.94
9241pegase fail | 143.58, 4378.57 | 125.11, 3852.90
TABLE IV

PERFORMANCE COMPARISON BETWEEN COLD- AND WARM-START
WHEN A GENERATOR HAS BEEN OFF.

Data Average # Iterations and CPU Time in Sec
Cold-start Duplication SPOPF

9 29.00, 0.07 7.47, 0.02 7.00, 0.02
30 55.26, 0.60 8.16, 0.09 4.47, 0.09
118 28.32, 1.04 3.21, 0.11 1.58, 0.07
RTS-GMLC 40.16, 2.14 6.95, 0.44 5.89, 0.35
300 64.32, 7.16 6.00, 0.52 2.79, 0.29
1354pegase 63.84, 48.84 7.58, 5.82 5.47, 5.02
2383wp | 119.11, 364.46 31.16, 67.66 39.11, 89.23
9241pegase fail | 166.63, 4747.14 | 167.47, 4747.62

All experiments have been performed on a Linux machine
having Intel Xeon CPU@2.30 GHz and 512 GB of mem-
ory. Julia 1.4.0, JuMP 0.18.6 [16], and Ipopt 3.2.10 [17]
with MAS57 [18] linear algebra engine and the number of
threads of BLAS fixed to 1 were used to implement our
methods. For warm-start, Ipopt’s option has been set as
follows. The option warm_start_init_point was set
to yes to perform a warm-start, and options related to
pushing the values into the interoir were relaxed so that
we could start near the given point. This was achieved by
setting all the parameter values pushing the given point
into interior, such as warm_start_bound_push and
warm_start_bound_frac, to 1072, We also set the mu
strategy to adaptive. Our code and data are available at [9].

A. Performance of warm-start

Tables III and IV show the performance comparison be-
tween the cold- and warm-start methods. We present the
average number of iterations and CPU time in seconds to
solve each time horizon. We excluded the first time horizon
problem from the average since all the three methods required
an exact solution of it. Therefore, the average was computed
over the 19 time horizons. For a fair comparison, we included
the CPU time (but not the number of iterations) to solve the
single-period problem (7) for the SPOPF warm-start method,
although it was negligible compared with the overall CPU
time. For the cold-start, we take a median of the lower and
upper bounds of a variable as an initial point, because we
use an interior point solver. For the phase angle variables, we
initially set them to have the reference angle value.

As the results in Tables III and IV demonstrate, our warm-
start method enabled us to achieve a significant performance
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TABLE V
PERFORMANCE OF COLD-START WITH A POWER FLOW INITIAL POINT
WHEN A LINE HAS BEEN OFF.

Data Cold-start with a power flow initial point
Average # Iterations | CPU Time in Sec

9 21.63 0.06

30 25.74 0.25

118 23.68 1.21
RTS-GMLC 113.00 4.39
300 24.95 3.29
1354pegase 46.95 40.78
2383wp 62.00 136.33
9241pegase 178.53 9827.52

improvement and follow a more numerically stable solution
path. Using warm-start, we computed a solution up to an order
of magnitude faster than the cold-start. In the 9241pegase case,
Ipopt showed severe numerical difficulties when we used the
cold-start and was not able to solve the problem. Between
the warm-start methods, the SPOPF method showed a better
performance than the duplication method. We believe this is
mainly because of primal infeasibility at the starting point of
the duplication method caused by load changes.

Since the performance of the cold-start can be sensitive to a
given initial point, we experimented with another initial point
by setting it to a solution of the power flow equations. Table V
presents the results when a line has been off. In most cases, we
were able to obtain a better performance, but they still showed
a much slower performance than our warm-start methods.

To see the performance variations between time horizons,
Fig. 2 shows the distribution statistics of the iteration numbers
over time horizons of the SPOPF method, when a line has been
off. In the cases of RTS-GMLC, 2383wp, and 9241pegase,
some variations were observed across iterations, however,
most of them occurred near a solution performing a lot of
iterations on looking for a numerically strict KKT point. This
observation supports our expectation that our tracking scheme
will provide a fast way of obtaining an approximate solution
of good quality as described Section IV-B. Similar results were
obtained for the duplication method.

B. Performance of approximate tracking scheme

Tables VI-VII present the performance of our approximate
tracking scheme when we initialized the starting point using
our warm-start methods with a generator turned off. In the
tables, the fourth column is the average of the relative objective

R 350
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Fig. 2. Distribution statistics of the iteration numbers of the SPOPF method
when a line was off.

TABLE VI
PERFORMANCE OF OUR TRACKING SCHEME WITH THE DUPLICATION
WHEN A GENERATOR WAS OFF.

Data # Max Iter | CPU (sec) | Rel Obj Err | Constr Viol
0o 2.72 5.55e-05 9.56e-03
10 2.63 5.55e-05 9.56e-03
1354pegase 5 1.67 6.10e-05 1.00e-02
2 0.70 1.13e-04 1.34e-02
1 0.42 6.56e-04 3.57e-02
00 38.42 1.13e-04 1.97e-03
10 14.93 1.25e-04 1.99e-03
2383wp 5 8.03 2.33e-04 2.41e-03
2 428 1.81e-03 8.42¢-03
1 2.33 2.44e-03 1.01e-02
0o 538.26 3.56e-05 1.53e-02
10 316.88 3.56e-05 1.53e-02
924 1pegase 5 167.60 3.59¢-05 1.53e-02
2 99.19 3.05e-04 4.90e-02
1 55.29 3.89e-04 7.30e-02
TABLE VII

PERFORMANCE OF OUR TRACKING SCHEME WITH THE SPOPF
WHEN A GENERATOR WAS OFF.

Data # Max Iter | CPU (sec) | Rel Obj Err | Constr Viol
[eS) 2.27 1.66e-09 6.28e-05

10 2.36 1.66e-09 6.28e-05

1354pegase 5 2.21 1.12e-09 6.28e-05
2 1.20 1.43e-09 6.28e-05

1 0.86 1.97e-09 6.29¢-05

'S 38.42 4.48e-07 1.35e-04

10 17.26 6.83e-06 7.14e-04

2383wp 5 10.72 1.18e-05 3.05e-04
2 6.94 1.95e-05 1.21e-04

1 6.11 2.33e-05 1.25e-04

00 439.69 3.46e-09 7.16e-05

10 320.89 3.46e-09 7.16e-05

924 1pegase 5 174.16 3.45e-09 7.16e-05
2 90.30 2.80e-09 7.16e-05

1 62.48 3.03e-09 7.16e-05

errors, and the fifth column represents the average constraint
violation values.

Using our approximate tracking scheme, we were able to
achieve a much faster computation time while maintaining a
good solution quality. For the largest data set, 9241pegase,
around two orders of magnitude speedup was achieved while
keeping the relative objective errors negligible and the fea-
sibility errors within 10~ when we used the SPOPF warm-
start. This allows us to provide a solution feedback of very
good quality within 2 minutes for each time horizon. Similar
results were obtained when we turned off a line.

Comparing Tables VI-VII, we note that both our approxi-
mate scheme and the SPOPF warm-start method have played a
critical role in having a good approximate solution. We believe
the feasibility guarantee and the consideration of the objective
coefficients for the incoming time period makes the SPOPF
method produce better results than the duplication method
does.

C. Effect of load variations

We measure the effect of load variations on the performance
of our warm-start under a whole load variation, i.e., all loads in
a horizon are updated as the horizon moves forward. We would
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like to point out that our existing assumption — the forecasted
loads in time periods between 2 and 7' do not change as the
horizon moves forward in time to include a new period (T'+1)
— is still a reasonable assumption for generator operation. In
general, accurately reflecting the actual load is not possible,
i.e., we do not know in advance exactly how much power will
be used. Even though we update the forecast for the entire
time periods as we move forward, we cannot guarantee that it
will be more accurate than the previous forecast. It is generally
admissible to have a discrepancy between the forecasted and
actual loads, since the system inertia and primary frequency
control [19] can tolerate a small imbalance between generation
and load.

Fig. 3 shows the performance of the duplication warm-
start method and its approximate tracking scheme for each
load perturbation, when we turned off a line. We randomly
perturbed the entire load in a horizon up to the value given in
the figure, i.e., load’ = (1 + perturb factor) x load, whenever
a horizon moves forward. Since we assumed 1.5% change in
load during 30 minutes, we chose 0.05% per minute as our
median value for perturbations.

In both the warm-start and tracking scheme cases, perfor-
mance deteriorated as we increased perturbations. However,
the amount of degradation was not significant. In the case
of the 1354pegase, the number of iterations has increased by
3 times for the largest perturbation (0.1%), but it was still
much fewer than the base cases of the cold-start as described
in Tables IIl and V.* The relative objective errors of our
approximate scheme were not much different from the case
where no perturbations were applied. Similar results were
obtained for the constraint violations. We note that we did not
present the 9241pegase case in Fig. 3(a) since we do not think
one may want to employ a warm-start for it for a real-time
optimization. Also, although we did not present, the SPOPF
method was slightly worse than the duplication method. In this
case, we think tailoring a solution for a single time period was
not effective since the whole load in a horizon changed.

V. CONCLUSION

We have presented a real-time optimization strategy for
solving a moving horizon of the MPACOPF problems. Our
strategy consists of warm-start and an approximate tracking
scheme. Warm-start provides a good initial point by exploiting

4Similar results as in Tables Il and V were obtained when we perturbed
the load and used the cold-start.

the solution overlap between consecutive time horizons, and
our tracking scheme allows us to approximately follow a
solution path with errors bounded to the second order of the
parameter changes of a single time period. This is achieved
by solving a single QP for each time horizon either exactly
or approximately. Experimental results over various networks
of sizes up to a 9K bus system showed around two orders
of magnitude faster computation time while maintaining very
small feasibility errors.
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