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Abstract—One of the most important aspects of the 

development of Electric Vehicles (EVs) is the optimal sizing and 

allocation of charging stations. Due to the interactions between 

the electricity and transportation systems, the key features of 

these systems (such as traffic network characteristics, charging 

demands and power system constraints) should be taken into 

account for the optimal planning. This paper addressed the 

optimal sizing and allocation of the fast-charging stations in a 

distribution network. The traffic flow of EVs is modeled using 

the User Equilibrium-based Traffic Assignment Model 

(UETAM). Moreover, a stochastic framework is developed 

based on the Queuing Theory (QT) to model the load levels 

(EVs’ charging demand). The objective function of the problem 

is to minimize the annual investment cost, as well as the energy 

losses that are optimized through chance-constrained 

programming. The probabilistic aspects of the proposed 

problem are modeled by using the point estimation method and 

Gram-Charlier expansion. Furthermore, the probabilistic 

dominance criteria are employed in order to compare the 

uncertain alternatives. Finally, the simulation results are 

provided for both the distribution and traffic systems to 

illustrate the performance of the proposed problem. 

Index Terms--Fast charging station, queuing theory, traffic 

assignment, chance-constrained programming, point estimation, 

probabilistic dominance criteria. 

I. INTRODUCTION 

Electric Vehicles (EVs) gain increasing importance in 

transportation due to their role in reducing the production of 

greenhouse gases [1]. Taking into account the limited All 

Electric Range (AER) of these vehicles, using them on a 

wider scale and enabling long-distance travels would 

necessitate the development of EV charging infrastructures 

such as Fast Charging Stations (FCSs).  

Furthermore, the uncontrolled nature of charging may 

have adverse effects on the distribution system (such as losses 

and voltage drops) [2]. Hence, the optimal planning of the 

FCSs is essential to achieve the benefits of EVs. Estimating 

the charging demands of EVs is considered as the first and 

main step in the planning of the FCSs. Charging demands of 

EVs depend on uncertain conditions such as the time and 

place of charging the batteries or their State of Charge (SOC). 

Nevertheless, it is possible to estimate the charging behavior 

of the EVs’ by evaluating the overall pattern of their mobility 

(obtainable from the traffic flows) [3]. 

Reference [1] has presented a method based on the 

Queuing Theory (QT) for modeling the 24-hour charging 

profile of the Plug-in Electric Vehicles (PEVs). Reference [4] 

has predicted the required power for charging EVs in a real 

urban traffic network in two stages. At the first stage, the rate 

of EVs arrival to the charging station is formulated based on 

the Markov chain traffic model and the teleportation 

approach using surveillance camera data. Then, the charging 

demand of EVs is determined using the Queue model and the 

data from the first stage. Bae et al. [5] have employed spatial 

and temporal modeling of the charging demand of an FCS 

located at a highway exit and have presented a mathematical 

model based on a fluid dynamic model and the QT. Recently, 

extensive research has been conducted to determine the 

optimal location and size of Electric Vehicle Charging 

Stations (EVCSs). In [6], a spatial and temporal model based 

on the Shared Nearest Neighbor (SNN) clustering algorithm 
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and QT has been introduced for determining the location and 

capacity of EVCSs.  

Reference [7] introduced a method for optimal allocation 

of charging stations containing two steps. The first step 

estimates the spatially continuous charging demand on the 

basis of the locations of the existing FCSs, point of interest, 

population and traffic data. The optimal allocation of the 

charging station is determined by the maximum spatial 

coverage model, in Step 2. Reference [8] has simultaneously 

considered the network topology and traffic limitations for 

the optimal planning of charging stations. The effect of the 

Time-of-Use (TOU) cost on the charging behavior of EVs has 

been studied in [9]. Reference [10] has presented a multi-

objective programming model for the simultaneous expansion 

planning of the distribution network and the optimal 

allocation of the FCSs. The equilibrium traffic flow model 

and QT have been developed to estimate the charging load of 

charging stations. 

The aforementioned studies have utilized different 

deterministic methods to specify the optimal location and size 

of the FCS. However, such problems depend on numerous 

unknown parameters (such as the EVs’ position, SOC, etc.) 

that will directly affect the planning of the FCSs. Faridimehr 

et al. [11], proposed a robust two-stage stochastic 

programming model for determining the optimal network of 

charging stations, where different uncertain resources (such 

as charging patterns, demand, and drivers’ behavior) have 

been considered.  

Reference [12] investigated the planning of the FCSs by 

considering the reconfiguration of a distribution system, in 

which a scenario-based approach is employed to model the 

uncertainties. Cui et al. [13], utilized a method to allocate the 

EVs’ charging station for urban areas.  

This paper addresses an integrated planning model for the 

optimal sizing and allocation of the fast-charging stations in 

the distribution system. A stochastic framework is developed 

based on the QT and User Equilibrium Based Traffic 

Assignment (UETA) model to model the uncertain behavior 

of EV drivers, as well as the load levels. The objective 

function of the problem is to minimize the annual investment 

cost, as well as energy losses that are optimized through 

chance-constrained programming. The probabilistic aspects 

of the proposed problem are modelled by using the point 

estimation method and Gram-Charlier expansion. 

Furthermore, the probabilistic dominance criteria are 

employed to compare the uncertain alternatives. Moreover, 

the effect of charging tariffs on the optimum planning of the 

charging stations is addressed. The main contributions of this 

paper are summarized as follows: developing the EV arrival 

rate profile by considering the effect of different charging 

tariffs, stochastic modeling of the proposed problem by using 

the point estimation method and Gram-Charlier expansion 

and evaluating the risk of a single-objective function by 

considering probabilistic dominance criteria and creating the 

list of non-dominant investment schemes. 

The paper is organized as follows. In Section II, the 

proposed model for determining the charging demand and 

capacity (the number of charging devices) of the FCSs is 

presented. Then, in Section III, charging station allocation by 

considering uncertainty is presented. Section IV is dedicated 

to probabilistic dominance criteria. The simulation results and 

analyses are provided in section V. Finally, conclusions are 

provided in Section VI. 

 

II. THE DETERMINATION OF THE CAPACITY AND 

CHARGING DEMAND OF THE FCSS 

A. User Equilibrium Based Traffic Assignment Model 

Generally, the policies and planning of the transportation 

system can change the spatial and temporal distribution of 

EVs and, as a result, the pattern of their charging demand 

(that will affect the operation of the power distribution 

systems) [14]. By assuming ( , )T TLG N   as a traffic 

network graph, the UETA problem is formulated for each 

period as follows [15]: 
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In the above equations, (1) is to minimize the sum of the 

areas under the performance function of all the links in the 

network. Equation (2) means that the sum of the flows of all 

the paths between each origin-destination (O-D) pair equals 

with the travel demand of that O-D. Equation (3) is a 

constraint to guarantee the non-negativity of the traffic flow 

in the path q between the origin r and destination s. 

According to (4), the flow in the link mn equals the sum of 

the flows in all the paths containing the link mn. 

The UETA problem is a nonlinear optimization problem. 

In this paper, the Advanced Interactive Microscopic 

Simulator for Urban and Non-Urban Networks (AIMSUN) 

has been utilized to solve the UETA problem. 

The traffic flow captured by the kth candidate charging 

station at time t can be computed using the results obtained 

from the traffic assignment as (5) [10]. 
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Here, ,k tf  is the sum of the traffic flows of all the paths 

passing through the traffic node k at time t. 

B. Determination of the capacity of the FCS using the QT 

It is assumed that the daily travel pattern and driving behavior 

of the EV drivers are similar to the conventional drivers. As 

mentioned before, ,k tf  represents the number of vehicles 

passing through the traffic node k; therefore, the average 

number of vehicles arriving at the kth candidate FCS at time t 

can be expressed as (6) (more details are represented in 

appendix II): 
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The arrival rate of vehicles at the kth candidate FCS during 

the rush hour is formulated by (8). 

  , ,max
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K
k t k t k      

EVs stochastic arrival in and departure from FCS are 

modeled using a queuing system [5]. In this system, EV 

drivers are considered as customers who need to refuel and if 

all charging devices are busy, they will have to wait in a 

queue. In the M/M/s queuing model, s stands for the number 

of identical charging devices, the first M denotes the arrival 

of the vehicles to the FCS that is based on the Poisson 

process with the parameter ,k t , and the second M is the 

service time for each charging device that is independent and 

has the exponential distribution with the average q . By 

using the M/M/s, it is possible to model the capacity of the 

FCSs as the following optimization problem. The number of 

charging devices of the kth FCS is minimized based on the 

patience of the customers (waiting charging time) as 

Equations (9)-(11) [10]. 
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Equation (12) is the probability of being no customer in the 

kth FCS at time t [5]. 
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,k t  is defined according to (13) [5]: 
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The values of , ( )k o RHt  and , RHk t  could be computed by 

substituting t as rush hour in (12) and (13), respectively. It is 

worth mentioning that, since it is difficult to find the inverse 

functions of equation (11), an enumeration technique is 

directly employed to solve the minimization problem. Based 

on the M/M/s queuing theory, this system is stable if and only 

if: , 1k t  , such that the queue lengths do not grow to 

infinity [5]. By combining the necessary and sufficient 

condition (the above inequality) for the queuing system 

stability and equation (13), the lowest number of charging 

devices should satisfy equation (14).  
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k
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By substituting ,k t  in , RHk t , the initializing value of kz  

is computed. Then, , RHk tW is calculated and compared with the 

permissibeW . Then, kz should be increased (1 unit in each step) 

until 
, RHk t

permissibeW W . The corresponding value of kz  

would be the optimal number of charging devices. 

In the process of determining the capacity of the FCS, the 

number of charging devices should satisfy the constraint (15): 

 min max
k k kz z z   

C. The determination of the charging demand of the FCS 

using the M/M/s queuing system 

If the charging rate of the charging devices during the 

charging process is taken into account to be constant, the 

EVs’ charging demand in the queue system of the kth FCS in 

time t can be expressed by (16) [16]: 

 , ,
FCS FCS

k t k tP B p  

Equation (17) shows the steady-state probability ,
( )k n t  in 

the M/M/s queuing system [5]. 
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where n is the number of vehicles requiring charging. Hence, 

the number of charging devices at service could be obtained 

as min( , )kz n  [5]. Therefore, in the M/M/s queuing model, 

,k tB  could be computed as (18) [17]. 
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III. OPTIMAL ALLOCATION OF FCSS 

A. Objective function 

The objective function consists of the following parts: 

 The investment cost for building the FCS 

The investment cost is formulated as (19). 
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In which, CHc  is the building cost of FCSs (such as the 

cost of fast charging devices, transformers, etc.). This part of 

the cost is independent of geographical location. other
kc  is the 

cost of land use that is proportional to the number of charging 

devices at each FCS, and F
kc  is the fixed investment cost 

(independent of the capacity of the FCSs). 

 The annual cost of energy losses 
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B. Problem constraints 

1) Deterministic constraints 
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,
D

i tP  and 
,

D
i tQ  are considered to have a normal distribution. 

In the proposed demand model of the FCSs, 
,

FCS
k tP  has 

been considered as a PQ bus with random characteristics. By 

considering the load factor equal to 1 for the vehicle batteries 

[1, 18], the demand for the vehicles could be expressed as 

follows: 

 , ,
FCS FCS

k t k tP B p  

 , 0FCS
k tQ   

2) Chance constraints 


max

Prob( ) ( )
DL

ij
S S ij     

 min maxProb( ) DL
iU U U i      

In the above equations Prob(.)  presents the events’ 

probabilities. It should be noted that the chance constraint 

ensures that constraints are satisfied with a specified 

confidence interval of α. However, it requires the Probability 

Distribution Function (PDF) of bus voltages and line flows. 

In this regard, the probabilistic power flow is performed 

using the combined Point Estimation Method and Gram-

Charlier Expansion (PEM-GSE) method. The proposed 

model employs the “2m+1 scheme” model of the Point 

Estimation Method to find the bus voltage and line current 

moments (where m is the number of input random variables). 

2m+1 scheme evaluates two deterministic power flows 

(Equations (21) and (22)), once above and once below the 

mean value for each input variable, while other variables are 

held at their mean values. Then, it needs to solve one 

additional deterministic evaluation assuming that all input 

variables are at their mean values [19]. According to [20], 

Gram-Charlier series expansion can approximate the PDF of 

bus voltages and line flows in terms of their first few 

moments. Based on the PEM-GCE method, the confidence 

interval of uncertain variables can be obtained. 

 

IV. PROBABILITY DOMINANCE CRITERIA 

By considering the probabilistic characteristic of the system 

load, the energy losses will also be probabilistic. 

A. Mean-variance method 

This first method is the most common method of decision-

making under uncertainty. Assume two plans A and B with 

mean values A  and B  as well as standard deviations A  

and B . According to the mean-variance criterion, in a 

maximization problem, plan A dominates plan B if [21]: 


A B

   

 A B   
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Figure 1. The stages of the optimization procedure  

In the mean-variance model, the mean is an indicator of 

fitness, and variance is an indicator of risk. In the above 

equations, if (27) is satisfied with inequality, then (28) just 

could be equality and vice versa. If each of the plans satisfies 

only one of these equations, plans A and B will be non-

dominated with respect to each other.  

B. Stochastic dominance method 

In this method, the PDF of the fitness is used instead of the 

mean and variance values; therefore, this method is a more 

comprehensive criterion for determining the risk and fitness 

[21]. Let assume two arbitrary cumulative distribution 

functions (CDFs), ( )AF x  and ( )BF x . Plan A dominates plan 

B if and only if: 


( ) ( )A BF x F x

 

C. Probabilistic Exceedance Measure 

Assume two random variables A and B. To select the greater 

variable, assume the difference between the two random 

variables ( )AB A B   . According to this method, the 

probability that A is greater than B is computed using (30) 

[22]. 

 1 (0)
ABABr F   

where, 
AB

F  is the CDF of AB . A and B could be compared 

with each other by using the following conditions in the 

symmetric threshold range [ ,1 ]l lT T . 

 If 1AB lr T  , then A is greater than B. 

 If AB lr T , then B is greater than A. 

 If 1l AB lT r T   , then A and B are equal. 

The threshold of lT  [0, 0.5] should be determined to  

select the dominant plan. In practice, lT  = 0.3 provides 

acceptable results [23]. 

Figure 1 schematically illustrates the stages of the proposed 

optimization procedure  

 

V. NUMERICAL STUDY 

A. Input data and assumptions 

The Sioux Falls traffic network and the corresponding 33-bus 

distribution test system are used here [24], [25]. As shown in 

Figure 2, common nodes between the traffic and distribution 

systems are considered as the candidate locations for the 

construction of the FCSs. O-D matrix and trip ratio data are 

available in [24]. According to the IEC 61851-1 standard [12] 
FCSp  is assumed as 44 kW. The maximum voltage deviation 

is 10% [3]. Other data and parameters are shown in Tables Ι-

Ш. 

 

TABLE I. THE CONSTRUCTION COST OF FAST CHARGING STATIONS. 

5 4 3 2 1 Candidate FCSs 

18 15 12 10 3 Traffic network nodes 

32 25 5 20 10 Distribution system buses 

8 8 8 8 8 CH

c  [104 USD] ([10]) 

3.55 3 3.8 4.2 2 ]DUS4 [10 
other

c 

49 32 44 45 25 
F

kc  [104 USD] 

TABLE II. MODELING PARAMETERS VALUES 

Value Parameter Value Parameter 

6 minz  [10] 10 maxz  [10] 

5 min alloweedW  [10] 850 C  

20 year FCSn  [10] 0.1   [10] 

99.87%   [26] USD/kWh 0.2 0Ec  [12] 

TABLE III. ELECTRICITY PRICE AND ELASTICITY COEFFICIENTS [12],[27]  

Price 

[USD/kWh] 

Self and cross elasticities 
Time of day Low 

load 
Off-

peak 
Peak 

0.5 0.012 0.016 -0.1 Peak (7-8 & 14-19) 

0.2 0.01 -0.1 0.016 
Off-peak (1-6 & 

22-24) 

0.15 -0.1 0.01 0.012 
Low load (other 

times) 
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Figure 3. CDF of the voltage of bus #5 at 10 AM of the feasible plan #2 

in the second scenario 

TABLE IV. PLANNING RESULTS OF THE FIRST SCENARIO 

Number of charging 

devices 
Locations (bus number) 

6 10 

9 5 

10 32 

Total cost=635245.8 USD   
 

B. Simulation results and analyses 

According to the traffic data of the Sioux Falls network in 

each period (one hour), a traffic flow distribution based on 

UETA model is computed by using the AIMSUN software. 

Arrival rates of EVs in each FCS in each time period are 

obtained based on the candidate nodes, for each possible plan 

(25=32), according to (6).  

Then the capacities of the FCSs in all possible plans are 

determined. The problem constraints are checked in two 

parts. In the first part, the minimum and the maximum 

number of charging devices constraint is examined. Then, 

according to the procedure described in part C of section II, 

the probabilistic charging load of FCSs in each possible plan 

is determined and the power system constraints are checked 

by considering the effects of the increased load. Afterwards, 

the feasible solutions for the problem can be obtained. 

At the first scenario, the deterministic planning model is 

investigated. The second scenario develops the probabilistic 

model. In the third scenario, the effects of different electricity 

tariffs have been modeled. 

1) First Scenario: deterministic planning 

In this scenario, the mean values of charging demands and 

conventional demands are considered as input data. The 

investment cost of this case is 635245.8 USD. The locations 

of the FCSs, as well as the number of charging devices at 

each FCS, are summarized in table ІV. 

2) Second scenario: probabilistic planning without 

considering electricity tariffs 

In this case, the chance-constrained programming framework 

is employed to consider the uncertainty of the proposed 

problem. Table V shows the results of this scenario. The 

confidence interval of the bus voltages and line flows are 

obtained using the PEM-GSE. In order to demonstrate the 

accuracy of the PEM-GSE method, it is compared with 

Monte-Carlo Simulation (MCS) in figure 3. This figure 

shows the CDF of the voltage of bus #5 at 10 AM of the 

feasible plan #2 in the second scenario. As it can be observed 

in this figure, the proposed model can precisely approximate 

the CDF of the bus voltage. Comparing the results of Tables 

IV and V, shows that the optimum plan of the first scenario is 

not feasible according to the second scenario. Furthermore, 

the planning cost is increased as a consequence of 

considering the uncertainties. 

It should be noted that, as it could be seen in Table V, the 

third plan has the minimum cost mean, while its variance is 

higher than plans 1 and 5. In order to select the optimum plan 

among these feasible plans (which all have their arbitrary 

PDF), probability dominance criteria methods are utilized. As 

displayed in Table VI, the third and fifth plans are non-

dominant in terms of mean cost and risk. 

After forming the non-dominant list, a decision-maker can 

select the final plan based on its interests confidently. 

Although this paper investigated the propagating of the 

uncertainties in the objective functions to form a list of the 

non-dominant plans, the selection of the final solution is not 

focused here. 

 
Figure 2. The graphical topology of the coupled distribution and 

transportation system (Gray links illustrate corresponding geographical 

nodes of the traffic and distribution system) 
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3) Third scenario: probabilistic planning considering 

electricity tariffs 

In this scenario, the rush hours of the traffic network, as well 

as the peak hours of the distribution system is considered. 

Also, the impact of electricity tariffs on the arrival rate of 

vehicles in the FCSs is considered. It is assumed that if the 

charging durations of EVs falls between two periods, the 

price of the first period will be taken into account as their 

charging tariff. The results are shown in Tables VII and VIII. 

According to these tables, both the mean and variance of the 

cost of feasible plans of the third scenario are lower than the 

second one that proves the performance and effectiveness of a 

proper electricity tariff design. 

 

VI. CONCLUSION 

In this paper, the probabilistic planning model has been 

developed for the optimum allocation and sizing of the FCSs, 

by taking into account both the electrical distribution system 

and the coupled traffic network. The UETA method has been 

utilized in order to model the traffic flows, while the QT is 

employed to handle the uncertainties of EVs’ charging 

demand. Moreover, the chance-constrained method has been 

used to model the probabilistic constraints of the problem. 

The Point Estimation method, as well as the Gram-Charlier 

expansion, has been employed to specify the PDFs of the 

uncertain variables. Furthermore, the probabilistic dominance 

criteria have been employed in order to compare the uncertain 

alternatives. Three scenarios have been introduced to 

investigate the performance of the proposed problem. On the 

one hand, the effect of considering the uncertainties has been 

compared with a deterministic model. On the other hand, the 

effect of different electricity tariffs on the behavior of EV 

drivers has been investigated. The results showed that the 

presence of uncertainties may significantly change the 

planning decisions. Also, a proper design of the electricity 

tariffs could change the behavior of EV drivers in a way to 

decrease their charging demand in the rush and peak times. 

Indeed, applying higher prices at rush times (when the traffic 

flow is high) or at peak periods (when the electrical load is 

high) will change the behavior of responsive EV drivers in an 

effective way. Therefore, not only the investment risk could 

be decreased, but also the planning of the FCSs could be 

managed more economically. 
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APPENDICES 

A. Appendix I 

Notations 

Sets 
TN   Set of nodes of the traffic network. 

TL
   Set of links of the traffic network. 

rsQ  Set of paths connecting the origin r and 

the destination s. 
K

   Set of candidate FCSs. 

T  Set of hours. 
DL

   Set of distribution system feeders.   

i   Set of candidate FCSs at bus i. 

DN   Set distribution system buses. 

Parameters 

rsq   Travel demand between the origin r and 

the destination s. 
trip

tf   Trip ratio at time t. 

TABLE VII. PLANNING RESULTS OF THE THIRD SCENARIO 

Cost 

variance 

Cost 

mean 

Capacities and locations of the 

FCSs Feasible 

plans Bus 
32 

Bus 
25 

Bus 
5 

Bus 
20 

Bus 

10 

101898 597765.7 7 8 7 0 0 1 

63949.2 580330.6 6 7 0 8 0 2 

67228.8 601623.4 6 0 6 9 0 3 

22742.3 580367.7 0 7 6 8 0 4 
 

 
 

TABLE VIII. RESULTS OF THE PROBABILISTIC ASSESSMENT IN THE 

THIRD SCENARIO. 

Probabilistic 

Exceedance 

Measure 

Stochastic 

Dominance 

Mean-

variance 
 

2,4 2,4 2,4 
Non dominate 

plans* 
*= These numbers indicate plan numbers taking from the first column of Table VII 

TABLE V. PLANNING RESULTS OF THE SECOND SCENARIO 

Cost 

variance 

Cost 

mean 

Capacities and locations of the 

FCSs Feasible 

plans Bus 
32 

Bus 
25 

Bus 
5 

Bus 
20 

Bus 

10 

61755.7 715828.3 6 7 6 8 0 1 

106657.8 639150.1 8 9 8 0 0 2 

67454.7 636268.5 7 8 0 10 0 3 

70898.8 644183.9 7 0 7 10 0 4 

24039.6 636294.1 0 8 7 10 0 5 

 

 

TABLE VI. RESULTS OF THE PROBABILISTIC ASSESSMENT IN THE 

SECOND SCENARIO 

Probabilistic 

Exceedance 

Measure 

Stochastic 

Dominance 

Mean-

variance 
 

3, 5 3, 5 3, 5 

Non 

dominate 

plans* 
*= These numbers indicate plan numbers taking from the first column of Table V 
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C  The total number of charging EVs 

during the time horizon T. 
0Ec   The initial cost of electric energy. 

( )Ec t   Electric energy cost in time t. 

( , ')E t t   Price electricity of time t versus time 't . 
permissibeW   Permissible waiting time. 

q  Mean service rate of charging devices. 

min
kz , max

kz   
Capacity limits of FCSs. 

FCSp   Charging rate of the charging devices. 

   Interest rate. 
FCSn   Planning horizon. 

CHc   The building cost of FCSs. 

other
kc   Cost of land use. 

F
kc   Fixed investment cost. 

yeard   The number of days in a year. 

,i jg   The conductance of feeder ij. 

,
D

i tP , 
,

D
i tQ   Conventional active and reactive load 

levels at bus i at time t. 
   The confidence interval of the random 

constraints. 

minU , maxU   Upper and lower thresholds of the bus 

voltages. 

maxS   The upper threshold of the flow passing 

through feeder ij. 

Indicators 

,
rs
mn q  Indicator of links (1: if the link mn is a 

part of the path q between the origin r 

and the destination s, 0: otherwise). 

,
rs
k q  Indicator of paths (1: if the traffic flow 

between the origin r and the destination 

s is captured by the kth charging station; 

0: otherwise). 

Variables 
( )mnp    Performance function of the link mn. 

rs
qf   Traffic flow on the path q between the 

origin r and the destination s. 

mnx   Traffic flow on link mn. 

,k tf   Traffic flow captured by the kth FCS at 

time t. 

ku   Binary variable (1: if the kth FCS is 

built; 0: otherwise). 

,k t  , , RHk t   The average number of vehicles 

arriving in the kth FCS at time t and tRH 

(rush hour), respectively. 

kz   The capacity of the kth FCS. 

, RHk tW   Average waiting time for refuelling in 

kth FCS at rush hour. 

,0 ( )k t , , ( )k o RHt   Probability of being no customer in the 

kth FCS at time t and tRH, respectively. 

,k t , , RHk t   Occupation rate of each charging device 

in the kth FCS at time t and tRH, 

respectively. 

,k tB   Number of charging devices at service 

at time t. 

, ( )k n t   Probability of being n number of EVs 

requiring charging in the kth FCS at time 

t. 

,
FCS

k tP , ,
FCS
k tQ   

Active and reactive probabilistic 

demands of the kth FCS at time t, 

respectively. 

,i tU , ,j tU   Magnitudes of the voltage of buses i 

and j at time t. 

,ij t   The angle of the voltage of feeder ij at 

time t. 

ijS  The upper threshold of the flow passing 

through feeder ij. 

 

B. Appendix II 

In this appendix, the supplementary explanations have been 

provided to clarify the equation (6). Assume that the 

probabilities for the EV drivers to charge at any FCS on the 

path q are the same. So, it could be estimated that the more 

numbers of passing EVs, will result in the more probability 

for going to be charged. So, the mean arrival rate at the kth 

candidate FCS would be /
K

k

k

k ff



 . Therefore, the initial 

average number of vehicles arriving in the kth candidate FCS 

at time t  can be expressed as:  

 ,
0 ,

,

, ,

K

trip
k t Kt

k t trip
k tt

t T k

ff
C t T k

ff


 

    


 

Also, it is considered that the electricity tariffs will affect 

the decisions of the EV drivers. Therefore, EV drivers will 

change their charging behavior in response to electricity 

tariffs. Consequently, the average number of EVs entering the 

FCS would change from 0 ,k t  (initial value) to ,k t . Hence, 

,k t  could be expressed as (A-2): 

 , , 0 ,k t k t k t      

According to reference [27], self and cross elasticity can 

be defined as (A-3). 


0

,'

0 ,

( , )
( )

E
k t

E
k t

c
E t t

c t









 

With the linearity assumption of ,

( )

k t

E
c t




, Equation (A-3) 

could be rewritten as (A-4): 
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0

,'

0 ,

( , )
( )

E
k t

E
k t

c
E t t

c t









 

By substituting Equations (A-4) and (A-1) in Equation (A-

2), the responsive average number of vehicles arriving in the 

kth candidate FCS at time t could be formulated as: 

'

' 0
, '

, 0
,

'

( )
(1 ( , ). )

, ,

K

trip E E
k tt

k t trip E
k tt t T

t T k

K

ff c t c
C E t t

ff c

t t T k
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