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Abstract—In order to participate in energy market, variable
renewable energy sources need to reduce the uncertainty of
forecast errors. Inclusion of storage can be a viable option not
only to minimize the penalties due to forecast uncertainties but
also to maximize the revenue generation. This paper presents a
decision framework for respecting the market constraints and
maximise the revenues of a wind and storage power plant.
Wind power and price forecast are used in convex optimisation
algorithm for making day ahead decisions on battery operation.
This day ahead optimisation results feed to an algorithm for
operating in the balancing market. Several scenarios and case
studies have been simulated to assess the value of storage for
revenue maximization of a wind power plant. The results show
that proposed algorithms can increase the revenue by more than
10% compared to the operation of wind power plant without
battery.

Index Terms—balancing market, battery storage, day-ahead
optimisation, revenue maximization, spot market, wind power

NOMENCLATURE

BESS Battery Energy Storage System
HPP Hybrid Power Plant
CET Central European Time
CEST Central European Summer Time
LSTM Long Short Term Memory
SOC State Of Charge
λ̂spot Forecasted spot price [e /MWh]
P̂t Day ahead power forecast [MW]
P spot
t Day ahead power bid [MWh]
PHPP
max Maximum power of the HPP [MW]
PBESS
max Maximum power of the BESS [MW]
P dis
t Discharging power from the BESS [MW]
P cha
t Charging power to the BESS [MW]
SOCmin Minimum state of charge [MWh]
SOCmax Maximum state of charge [MWh]
SOCt State of charge of the battery [MWh]
ηleak Leakage loss of the BESS [MW/MWh/hour]
ηdis Discharging loss of the BESS [MW/MW]
ηcha Charging loss of the BESS [MW/MW]
switcht Binary variable for the charge and discharge
ŜOCstart SOC estimated at the opening of the market

This work is done as part of Indo-Danish project “HYBRIDize” funded by
Danish Innovationsfonden (IFD)

λspot spot price [e /MWh]
C Value associated to the remaining SOC at the

end of the day SOCt24 (optional) [/MWh]
SOCmismatch mismatch between the SOCgoal and the

SOCt24 (optional) [MWh]
SOCgoal Goal state of charge for the end of the bidding

period (optional) [MWh]

I. INTRODUCTION

Increasing concern for climate change, energy security as
well as reducing prices for renewable generation technologies
is leading to transition of traditional energy systems to re-
newable sources driven energy systems. Among the renewable
generation sources, wind turbines and solar photovoltaics (PV)
are most prevalent and economic generating sources. However,
the challenges with these generations come from inherent
variability of the natural resources. Until recently, most of
the wind power plants (WPPs) have been developed either
with feed-in-tariffs or power purchase agreements. However,
in future WPPs need to participate in the energy markets
for revenue generation. Addition of storage increases the
dispatchability of the WPPs. Storage is particularly relevant for
markets where power prices are zero correlated or negatively
correlated with wind power productions such as Danish power
market. Storage allows WPP to increase the revenue through
flexibility and time shifting of the power production. Benefits
of dispatchability and flexibility is further pronounced in wind,
PV and storage based hybrid power plants (HPPs) [1]. When
more and more renewables are integrated in the power systems,
the possibility of curtailment also increases either from system
security point of view or due to overproduction compared to
load. Storage can also be useful in minimizing the spilling of
excess energy, thereby reducing the loss of revenue for the
power plant owner. Further, storage is helpful to reduce the
impact of forecast error and thereby, reduce penalty due to
imbalances. Power curtailment alongside with forecast error
penalties reduce the profit of the renewable power plants.
This paper develops a novel optimization for battery control
to maximize revenue for a power plant from energy market.
The methodology is general for WPP or PV power plant or an
HPP. However, for simplicity and easy understanding, storage
and wind based HPP is considered in this paper.
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There has been many works in literature regarding usage
of storage together with WPP for energy arbitrage. In [2], a
battery energy storage system (BESS) is implemented in a
large WPP to smoothen power output. This paper assumes
that the forecast achieves to predict hourly average of the
power. However, this method can’t be applied for bidding in
day ahead market. Yao et. al. [3] introduced a control scenario
using two batteries such that the WPP is not connected to the
grid but only to one battery. While the battery connected to
the WPP is charging, the other battery is connected to the
grid and is discharging. Using such scheme require massive
investments in BESS. An approach for trading in the intraday
market has been developed by Skajaa et. al. [4] and shows
high complexity of such a method. Luo et. al. [5] and Li et.
al. [6] developed control strategies for BESS based on forecast.
Similar to [3], the dispatch implemented enforce that the
battery is fully cycling and not following random fluctuations
as in [2]. In [5], three power forecasts are generated and sorted
as the optimistic, pessimistic and average forecasts. The output
power is then set to either the optimistic when the battery
is empty or to the pessimistic when the battery is charged.
In [6], the approach is a little different but does not change
fundamentally. In both of these cases, the HPP is allowed to
reschedule its production after a certain time window without
penalty. All these strategies are difficult to implement in the
European market structure and often need to use large batteries
and therefore very expensive solution [7]. Most importantly, all
these studies although efficient in addressing wind variability
often give too little interest in revenue optimisation in the
electricity markets.

Crespo-Vazquez et. al. [8], [9], Gomes et. al. [10] and
Pinson et. al. [11] focused in modelling the various electricity
markets and ways to operate in it. In [8], [9], [11], much
effort is put in refining forecasts using various techniques
such as neural networks, stochastic analysis or multivariate
fitting while in [10] a Monte Carlo approach is used to
randomly generate scenarios from the original data. Based on
these renewable generation and market forecasts, the bidding
strategy is set through an optimisation algorithm often a linear
optimisation with the objective of maximising the revenues.
In [8], [9] and [10] even though the market design is really
detailed there is a lack of consideration of the battery operation
and cycles compared to the articles [3], [5], [6]. There is also a
general lack of consideration for the operation over a full year
with seasonal variation of price and wind power production.

The objective of this paper is to develop a novel algorithm
for optimal operation of wind storage HPP. BESS control and
optimisation strategy is developed for maximising revenue.
The strategy involves an integrated bidding algorithm covering
day ahead market and regulating period respecting the Danish
market structure. Detailed studies are performed to assess the
value and power to energy ratio of storage together with WPP.

This paper is structured as following. Section II describes
the mathematical optimisation model for day-ahead bidding,
balancing operation and revenue calculation. Section III sim-
ulates realistic scenarios, case studies and sensitivity analysis

based on historical prices and wind power production. Section
IV concludes the paper.

II. OPTIMISATION MODEL

The bids are submitted by HPP in the day-ahead spot market
based on available weather forecast. Forecast error can often
lead to high regulating costs. A first approach is to use a
battery to try to smooth the forecast errors and reduce the
regulating costs. Another approach to increase the revenue can
be to use the flexibility of battery in order to take advantage
of the highest electricity prices to produce more and charge
it when the prices are low. This second approach brings up
another uncertainty in terms of market price forecast. There-
fore, battery charging and discharging strategy for minimizing
day-ahead forecast error can be different from maximizing
revenue from energy market. Additionally, WPP operator can
try to minimize the day-ahead forecast error in intra-day and
regulating markets when new forecasts are available, since
the forecasts closer to real time operation are expected to
have have lower error than day-ahead forecast. The operation
can be divided in two parts - ’Day-ahead optimisation’ and
’Balancing operation’ as shown in Fig. 1. The revenue is
calculated afterwards based on the day ahead bid, the power
transmitted to the grid and the market prices.

A. Day-ahead Optimisation

The basic principle for optimisation in the spot market is
to maximise the spot revenue according to the production and
market forecast considering power plant production constraints
(battery losses, maximum power, etc). The proposed algorithm
optimises over a full day of 24 hours. The optimisation
window starts at midnight CET/CEST and ends 24 hours later.

The algorithm is presented in the following equations:

max Πspot
d =

∑
t∈T

(λ̂spott · P spot
t ) (1)

subject to:

|P spot
t | ≤ PHPP

max ∀t ∈ [t0, t23] (2)

P spot
t = P̂ res

t + P dis
t − P cha

t ∀t ∈ [t0, t23] (3)

P dis
t ≤ PBESS

max · (1− switcht) ∀t ∈ [t0, t23] (4)

P cha
t ≤ PBESS

max · switcht ∀t ∈ [t0, t23] (5)

0 ≤ P dis
t ∀t ∈ [t0, t23] (6)

0 ≤ P cha
t ∀t ∈ [t0, t23] (7)

SOCmin ≤ SOCt ≤ SOCmax ∀t ∈ [t0, t23] (8)

SOCt = ŜOCstart t = t0 (9)
SOCt+1 = SOCt · (1− ηleak) (10)

+ P cha
t · ηcha ·∆t−

P dis
t

ηdis
·∆t ∀t ∈ [t0, t23]

Binaries: switcht

The objective function (1) is maximising spot revenue,
Πspot

d based on forecasted spot price, λ̂spott and day ahead
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Fig. 1. Full operation algorithm

power bid, P spot
t . Equation (2) ensures that HPP is not

producing more than its rated capacity, PHPP
max . Equation (3)

ensures energy balance, where P̂ res is power generation by
renewable generation sources, P cha, P dis are charging and
discharging power to the battery respectively. Curtailment is
not considered because it negates the objective of maximizing
revenue. Equations (4) and (5) constraints that the battery does
not charge and discharge at the same time, where PBESS

max is
power rating of the battery. Equations (6) and (7) set the power
flows of the battery to be positive. Equation (8) is setting the
limits to the battery SOC. The initial state of charge ŜOCstart

in (9) is estimated using the known SOC at the calculation time
and simulate operation based on the day ahead forecast and
the battery flows decided by the previous day ahead algorithm.
The only added knowledge compared to the decisions made
on the day before is the current state of charge. Equation
(10) is modelling the evolution of the SOC over time due
to leakage (efficiency, ηleak), charge (efficiency, ηcha) and
discharge (efficiency, ηdis).
It is also possible to add a constraint for setting the SOC
at the end of the bidding period. As is, for maximising the
revenue, the algorithm will sell all the power stored in the
battery before the end of the bidding time, having a null SOC
after each bidding time without considerations for the next day
of operation. However, it has been observed that the lowest
prices of the day (in the considered market) are found in the
hour range between 00:00 and 4:00 and therefore it might
not be problematic that the battery is totally discharged at the
end of one day in order to be able to take advantage of the
lowest prices in early morning. However, the equation (11)
can optionally be added to set an end goal to SOC, SOCgoal

at the end of the bidding day.

SOCt = SOCgoal t = t24 (11)

This equation can lead to an infeasible problem in the case
when the wind is blowing full power and the battery is not able
to discharge because the grid connection is already congested
by the wind power produced. To tackle this issue, (11) has
been relaxed and the objective function is modified as shown
in (12) and (13).

Πspot
d =

∑
t∈T

(λ̂spott · P spot
t )− 106 · SOCmismatch (12)

|SOCt − SOCgoal| ≤ SOCmismatch t = t24 (13)

SOCmismatch measures the mismatch between the SOC
wanted at the end of the period and the SOC set at the end of
the period. A high cost is associated to having this mismatch in
order to force the optimisation algorithm to set it to zero most
of the time except when not possible due to meteorological
reasons.

B. Balancing Operation Algorithm

The approach developed for balancing market is to use
the battery in order to reduce the balancing costs. Therefore,
the implemented algorithm is set to compensate the bidding
error i.e. error between day ahead scheduled power and real
production. Balancing settlement in Nordic market is carried
out every 15 mins. The algorithm proposed in Fig. 2 is aiming
for the average scheduled power over the settlement window
by storing a variable representing the energy imbalance of
the given quarter of hour step. This variable is reset to be
equal to zero at the beginning of each new settlement window
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Fig. 2. Balancing operation algorithm aiming for the average scheduled power over the settlement window

and is incremented by the mismatch energy whenever the
power transmitted to the grid is different from the scheduled
power. Mismatch power, ∆P is computed as the difference
between the schedule and the production added to the required
power necessary to offset the energy imbalance as detailed in
(14). This power difference is aimed to be supplied by either
charging or discharging the battery depending on the sign of
the power difference and SOC of the battery.

(∆P )t = P res
t − P spot

t +
1

∆T

∫ t

t0

(P grid
t − P spot

t )dt (14)

• P res Power generation by the renewable energy sources
(in this case wind turbines) in MW

• ∆T is the time resolution for which the optimisation is
done; considered as 1 minute.

• t0 and t are respectively the starting time of the settlement
window and the current time.

The battery is discharged until the lower SOC limit of the
battery and charged until the upper SOC limit of the battery.

C. Revenue Calculation
During actual operation, the grid operator activates up or

down regulating power based on the imbalance in the grid,
which leads to up and down prices respectively. The day-ahead
revenue, Πdayahead is calculated by multiplying scheduled
power, P spot by spot price, λspot for the same hour as shown
in (15).

Πdayahead
t = λspott · P spot

t (15)

Balancing revenue Πbalancing is equal to the difference
between the previous bids and the generated power multiplied
by the up price λup or down price λdown according to the sign
of the delta (16). The energy delta between the production and
the bid is settled by the system operator on quarter hourly basis
[12].

Πbalancing
t =

∑
q∈[0,3]

∆+
t,q · λdown

t −∆−t,q · λ
up
t (16)

where positive power imbalance, ∆+ and negative power
imbalance, ∆− are defined according to equations (17) and
(18).

∆+
t,q = max(0, 4 ·

∫ t+ 1
4 (q+1)

t+ 1
4 ·q

(
P grid
t − P scheduled

t

)
ds) (17)

∆−t,q = −min(0, 4·
∫ t+ 1

4 (q+1)

t+ 1
4 ·q

(
P grid
s −P scheduled

t

)
ds) (18)

In both equations (17) and (18), P scheduled
t is used to refer

to the total scheduled power from the previous markets that
the producer is expected to generate during an hour. P grid

s

is the time series of the measured generation at the point
of connection. These deltas are considered to be the average
power imbalance over a quarter of hour.

III. CASE STUDY AND RESULTS

A. Description of the study cases

Several case studies are performed to analyse the value of
using battery storage together with wind power in a HPP. The
parameters used to describe the HPP are presented in Table
I based on [13] and [7]. The optimisation models presented

TABLE I
HPP PARAMETERS

Name Value Unit
PHPP
max 51 MW
Pwind 51 MW
PBESS
max 34 MW
SOCmax 245 MWh
SOCmin 0 MWh
SOCstartOfY ear 50% · SOCmax MWh
ηchar 0.95 MW/MW/hour
ηdis 0.95 MW/MW/hour
ηleak 0 MW/MWh/hour

in the previous section are solved using the simplex solver
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of IBM Decision Optimisation Studio CPLEX through the
docplex python library [14].

B. Study Case - Value of day ahead optimisation

In the first study case, added value of day ahead op-
timisation is analysed. A perfect forecast scenario, called
“Oracle” scenario has been considered as base case to analyse
the value of forecast. Forecast for wind power is obtained
from CorRES [15], while forecast for spot market are de-
rived through a machine learning based LSTM model (and
referred as LSTM henceforth in the results) using historical
consumption, production and market prices data for last few
years from Nordpool [16]. The consumption, production and
wind production prognosis as well as market prices have been
chosen as predictors for spot market forecast. The model
is trained using data from 2014 and 2015 and then daily
forecast is calculated for 2016. However, since any forecast
methodology can be used for the studies, details on forecast
methods is excluded from the paper. Both for oracle and
LSTM, added revenue is compared with respect to the base
scenario of operating the WPP without battery storage. Three
scenarios are compared in Fig. 3 - i) Operation without battery,
ii) Utilizing the battery only for balancing the forecast error,
iii) Full utilization of the battery through the optimization
model as well as balancing operation is described in section
II.
In all of these scenarios, the end of the day SOC is set free
and therefore will most likely empty the battery at the end of
the day. All these cases have been computed over the full year
of 2016 with a starting SOC of 50% of the energy capacity.

Fig. 3. Comparison of added revenue for different scenarios relative to bidding
the forecast without battery

Fig. 3 shows the added revenue over the full year for
each of the cases as compared to operate the WPP without
battery. Battery used only for balancing doesn’t add much
revenue compared to allowing for day ahead optimisation. In
the “LSTM forecast” case, the added revenue for balancing is
approximately 1% while when used in the day ahead market
increase the revenue by more than 10%. This figure also
demonstrates the importance of improving the accuracy of the
power forecast. When operating in the day ahead market the
forecast become even more valuable and could help increase

the revenue by up to another 10% as demonstrated by “Oracle”
case.

TABLE II
REVENUES FOR THE ORACLE SCENARIOS - WITH OPTIMISATION,

WITHOUT OPTIMISATION (ONLY BALANCING) AND WITHOUT BATTERY

Revenues for the oracle and LSTM scenarios - without
battery, with a battery only for balancing and with day ahead
optimisation are shown in Tables II and III respectively. The
surplus and shortages are calculated as the sum of respectively
all the up and down regulation imbalances. Oracle scenarios
still have some balancing costs although the production is
known in advance. This is due to the Danish market structure
where imbalances are settled over quarter of hours while the
spot bids are done hourly. During a given hour the quarter
hourly average might not be equal to the hourly average. This
is translated in the oracle case without battery by having a mis-
match cost (UpCost+DownCost) of around 41 ke (negligible
with respect to the total revenue). In the Oracle-only balancing
scenario, most of the imbalances are compensated since total
revenue is close to the spot revenue. The shortage seen in
this case is directly related to the energy loss due to the
battery efficiency. Battery reduces the balancing revenue from
41 ke to 24 ke (negligible with respect to the total revenue)
but most importantly, it reduces the mismatch cost to 2 ke .
Finally, in Oracle-day ahead optimisation scenario, mismatch
costs increase (still lower than the case without battery) and
significant increase in the spot revenue.

TABLE III
REVENUES FOR LSTM FORECAST SCENARIOS - WITH OPTIMISATION,
WITHOUT OPTIMISATION (ONLY BALANCING) AND WITHOUT BATTERY

It can be observed from Table III that the balancing revenue
is increased by 145% in the optimisation case compared to the
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case without battery (from 218 ke to 514 ke ). This implies
loss in revenue, although it is compensated by the increase
in revenues from the spot market. However, the mismatch
cost associated to these decisions is around 165 ke (so less
than half of the regulating revenue). This implies that if all
the power would have been sold in the spot market, the total
revenue would have increased only by 165 ke (negligible with
respect to total revenue). Overall, the scenario including spot
optimisation with the forecast has a higher revenue than the
Oracle scenario without batteries.

The number of equivalent cycles for battery have been
calculated based on [17]. It is observed that number of cycles
is 30 and 89 for Oracle and LSTM - without optimisation
scenario respectively and 285 and 263 for Oracle and LSTM
- with optimisation scenario. It is worth noting that even
though the scenario that include day ahead optimisation and
perfect information has a higher revenue, it also requires
higher number of cycles compared to the forecast scenario.
Finally, the values found for the number of cycles are in the
range of the lifetime of the battery (typically 5000 cycles) and
the wind turbines.

C. Sensitivity studies for SOC final value

Since, final value of SOC is an important criterion for
optimization model, sensitivity studies are performed in 2
methods for different final values of SOC. In the first method, a
fixed goal is set for SOCgoal. In the second method, remaining
stored energy at the end of the bidding window is economically
valued (C). C have been chosen according to spot price
distribution over the year and have been set constant over the
full year as shown in Fig. 4 .

Fig. 4. Cumulative distribution of spot price over the year 2016

Fig. 5a presents the evolution of the additional revenue
compared to the case without battery in function of the various
SOCgoal or in function of the value associated to the final
SOC. Valuing approach yields higher revenues than the goal
setting approach with a maximum revenue obtained for a cost
equal to 18.6 e /MWh for which only 10% of the yearly
prices are lower. The highest revenue is equal to 4900 ke but
represents an improvement of only 8 ke compared to the case

where the SOC is set free (see Table III). Cases for which the
goal is set free and for which the goal is set to be null lead
to equal revenues.

(a) Additional yearly revenues

(b) Number of cycles
Fig. 5. Variation of the additional revenue and the number of cycles for the
various SOCgoal in red and C in blue

Even though the best scenario does not improve much the
revenue, it is interesting to note that the goal setting approach
seems much worse regarding the battery lifetime. As shown
in 5b, the number of cycles for the valuing energy approach
does not use more than 263 cycles over the year while the
scenario having a goal of 60 MWh uses 290 cycles over the
year, implying higher energy losses and lower lifetime of the
battery.

D. Sensitivity studies of power energy ratio of the battery

Scenario of valuing the remaining energy at the end of the
day with a value equal to 18.6 e /MWh is used for sensitivity
studies of power energy ratio of the battery. It should be noted
that economic analysis of the cost of battery is not considered
in this study.

Additional revenues for different energy capacity of the
battery as shown in Fig. 6 demonstrates that additional revenue
is exponentially increasing with high energy capacity for a
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Fig. 6. Revenues in function of the energy capacity of the battery for various
power ratings

considered nominal power rating. However, the value of an
additional MWh of capacity is lower in the case when it lacks
power capacity (even with high energy rating). This decrease
starts to appear for a ratio such that the battery has a capacity
of 4 hours its nominal power. Below that threshold, it seems
that there is less economic interest in adding a battery. Another
interesting highlight of Fig. 6 is that for the case with 30
MW nominal power capacity, the additional revenue with 120
MWh is more than half the additional revenue associated to a
capacity of 240 MWh. If the battery price is linear in function
of the battery capacity this would mean that a battery of
30MW/120MWh is more profitable per unit invested than a
battery of 30MW/240MWh.

The life duration analysis is done assuming that the battery
has a minimum cycle life of 5000 cycles and that its calendar
life does not exceed 25 years [18]. Fig. 7 displays the lifetime
associated to each scenario in a similar way as in Fig. 6.
The scenario using a battery of 30MW/120MWh has a much
shorter lifetime than the scenario using the 30MW/240MWh
one. It can also be seen that in general increasing the battery
nominal power is reducing its lifetime quite drastically while
increasing the energy capacity has an opposite effect.

Finally, sensitivity studies are performed to compare the
value of the battery relative to the case for which no battery
is used or for which the battery is used only for balancing as
shown in Fig. 8. When using the battery only for balancing
the revenue is very low for most energy capacities. Even for
the highest energy capacity of 240 MWh, the added revenue
only increases by 1% compared to the case without battery.
However, the added revenue is higher considering day-ahead
optimisation even with smaller battery capacity (4 times for
120 MWh and double for 60 MWh battery).

IV. CONCLUSION

This paper develops an integrated bidding optimisation and
balancing methodology to optimally control battery storage
in wind-storage HPP. Results in this paper have shown that
storage system could be managed in several ways and that

Fig. 7. Life time of the BESS for the various scenarios

Fig. 8. Added revenue for various energy capacity at a fixed rated power of
30 MW for different optimisation scenarios.

scheduling the production based on the market price forecast is
the most effective. An integrated bidding strategy for both day
ahead markets and balancing markets have been developed.
Applying such strategy is eventually increasing the revenue
by more than 10% compared to the case without battery. An
approach to bridge the gap between bidding windows has been
assessed and it has been found that the most efficient technique
relative to revenue and life time maximisation was to value the
remaining energy rather than constraining the SOC goal to a
given value. An analysis has been performed on the sensitivity
of the results relatively to the battery power and energy ratings.
and it has been shown that the lifetime considerations plays
important role when choosing the battery capacity. Since,
battery lifetime and cost plays a crucial role in the optimal
decision of battery dispatch, it will be natural choice to include
the battery cost and lifetime in future research of hybrid power
plant’s profit maximization.
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