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Abstract—Load forecasting is essential for different activities
on power systems, and there is extensive research on approaches
for forecasting in different time horizons, from next-hour to
decades. However, because of higher uncertainty and variability
compared to aggregated or medium and high voltage, the fore-
casting of the individual household load is a current challenge.
This paper presents a load forecasting for multiple households
using Bayesian networks. Our model, which is multivariate, uses
past consumption, temperature, socioeconomic and electricity
usage aspects to forecast the next instant household load value.
It was tested using real data from the Irish smart meter project
and its performance was compared with other forecasting meth-
ods. Results have shown that the proposed approach provides
consistent single forecast model for hundreds of households
with different consumption patterns, showing a generalisation
capability in an efficient manner.

Index Terms—Bayesian Networks; Data-driven Modelling;
Household Load Forecasting; Very Short-term Load Forecasting;
Smart Meters.

I. INTRODUCTION

Load forecasting (LF) is useful for multiple activities on
power systems, by providing the expected demand it can
assist scheduling, control, operation, maintenance activities,
and planning for the generation, transmission and distribution
systems [1], [2], [3], [4]. The LF task can be divided according
to the prediction horizon [1], [4]: Long-Term Load Forecasting
(LTLF) ranging from years to decades; Medium-Term Load
Forecasting (MTLF) ranging from months to few years; Short-
Term Load Forecasting (STLF) ranging from days to weeks;
and Very Short-Term Load Forecasting (VSTLF) ranging from
minutes to the next hour.

Besides the relevant research in this topic, there still are
challenges for LF [5], in specific for individual households

This work was supported by the Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001, Fundação
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LF, which present an intrinsic higher uncertainty and volatil-
ity [6] compared to the aggregated, medium and high voltage
networks LF. In addition, there is also a large amount of
data arising from smart meters at households together with
the multivariate data related to anthropological and structural
information [7]. Besides such aspects, there also is the need for
generalist models capable of performing multiple households
forecast instead of specific ones for each building LF [8].
Households LF is also motivated by other modern power
systems applications, as demand response [8], that can benefit
from a real-time LF.

There are different approaches that resulted in small error
values for household load forecasting, which are evaluated
with different forecasting metrics [8], [9], [5], [10]. However,
these methods have some aspects that must be highlighted. The
use of invasive information related to household inhabitants
routine and also the households’ explicit identification to
perform forecasting. Forecasting methodologies that need all
the previous observed load values to the forecasting model
learning. And the models that are optimised to individual
building load forecasting. These aspects are related to intrusive
information usage, or a large amount of previous load con-
sumption data, or are specific learned to individual household
forecasting.

In this sense, this paper presents the use of Bayesian
Networks, a probabilistic graphical model [11], to perform
multiple household LF by using multivariate data related to
non-invasive households socioeconomic and electricity usage
aspects, the temperature, and their previous power consump-
tion measures. The model was evaluated using the Irish smart
meter project data [12] by forecasting the next half-hour
consumption for hundreds of households in all instants for
different days. The proposed approach comprises a training
stage, where model learning is performed by using the past
two weeks load data for all households together with some
socioeconomic and electrical usage features. The forecasting
stage tests how such the model predicts the next demand
value for each household given the previous consumption and
without using the households identification.

The rest of this manuscript is organised as follows. Sec-
tion II reviews the related research, Bayesian Networks are
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formally introduced in Section III, Section IV presents the
materials and methods, as the smart meter data, followed by
the data pre-processing, the load forecasting trough Bayesian
Networks, and how this approach forecasting capability was
evaluated. Section V presents and discusses the results of
our model considering the gaps mentioned previously, and
Section VI concludes this manuscript.

II. LITERATURE REVIEW

Because of the importance of a reliable prediction for the
operation and planning of energy systems, there is extensive
research on LF [4], [6], [13]. In specific, the household
VSTLF, addressed in this manuscript, is useful for demand-
side management [8], demand response by a real-time stimulus
for handling unexpected changes [14], [1], and also to assist
system restoration during contingencies [15]. The approaches
for LF range from linear, like linear regression and auto-
regressive models, to non-linear, as artificial neural networks
(ANN) and support vector machines, and are applied in the
high, medium and low-voltage systems. The LF for low-
voltage systems can also be divided into aggregated load or
individual household load forecasting, this last being the focus
of this paper.

Chaouch [9] performed a household STLF by using a com-
bination of clustering and functional wavelet-kernel approach
to predict the daily load curve of each cluster. They use
all the previous observed power consumption as learning set
to forecast the next day load curve and also evaluated the
performance with the Irish smart meter data. Javed et al. [8]
used a multilayer perceptron to perform household STLF
by combining house inhabitants behaviour and residences
features, which resulted in an efficient forecast for multiple
houses. Another study that presented a model for a single
household was presented in [16], which used an ANN together
with individual appliances information, resulting in good per-
formance results. Such approaches that depend on appliances
information or detailed inhabitants and houses features should
be carefully addressed since privacy issues are an essential
aspect of modern power systems [17].

A trend in non-linear models is the use of Deep Learning
(DL), as in [5], where a DL approach to STLF of household
consumers was presented using the Irish smart meter project
data. This approach was compared to other models, and the
achieved results showed that the proposed DL overcomes the
others. Besides the small errors reported, their model was
tested in only a specific month, without assessing the effects of
seasonality, an essential factor in LF. Almalaq and Zhang [10]
presented a DL forecasting model, which parameters were
optimised by an evolutionary heuristic, providing excellent
results. However, only a single residence and a single commer-
cial building were used separately to evaluate their approach,
which limits the generalisation of the reported results.

Bassamzadeh and Ghanem [18] used a Bayesian Network
to perform load modelling for aggregated and residential load.
They randomly divided the data into two sets, 90% of data for
the model training, and the remaining for testing, without using

the consumption’ temporal sorting during prediction tests. As
Bayesian networks can model the relationship among random
variables, their study evaluated the effect of different pricing
policies on electrical consumption using a data set with the
consumption of 25 customers. Although [18] study does not
perform household load forecasting, it is the only one that used
a Bayesian Network to model residential power consumption
at the individual household level.

There are also other LF studies that used Bayesian methods
in different approaches [19], [20], [21], [22]. In [19], a
Bayesian combined predictor is used to decide which model
will provide the forecast. In [21] and [22], the Bayesian
method is used as a probabilistic approach to minimise the
error during ANN learning, and [20] used a point Bayesian
estimation to forecasting the day-ahead peak loads. All these
models forecast a single load value related to the aggregated
load from large regions, i.e., with less volatility than individual
households load.

III. BAYESIAN NETWORKS

A Bayesian network (BN) is a probabilistic graphical
model [11] defined as a directed acyclic graph (DAG), G =
(V,E), where V is a set of vertices representing n random
variables X = {X1, ..., Xn}, and E is a set of m directed
edges representing causal and influential relationship among
the variables together with the joint probability P (X1, ..., Xn).
Besides G, the BN model also has a set of conditional
probabilities distribution between the dependent (connected)
variables - Θ = {θ1, ...θn}. According to the local Markov
property [23], each vertex is conditionally independent of its
non-descendants given its parents states. As a consequence, a
vertex state can be represented by a conditional probability,
θi = P (Xi | Pa(Xi)), where Pa(Xi) are the parents vertices
of Xi. Using this, we can rewrite the joint probability using
the chain rule as [24]:

P (Xi, . . . , Xn) =

n∏
i=1

P (Xi | Pa(Xi)), (1)

in this manner, the joint probability can be calculated by using
the set of conditional probability distributions - Θ.

A BN model directly depends on the graph G and the con-
ditional probabilities Θ, and both must be learned. The graph
learning, also known as structural learning, can be Constraint-
based, Score-based and hybrid [25]. Constraint-based uses
independence tests to evaluate edges in G. Score-based use
heuristics to search for structures that are evaluated using some
goodness-of-fit metric as Akaike Information Criteria (AIC)
or Bayesian Information Criteria (BIC), and hybrid methods
combine these two approaches. Learning strategy examples
are super-structures learning [26], model averaging [27], hill
climbing [28], and tabu search [11].

After learning the G, it is also necessary to learn the
quantitative part of the BN, Θ, that depends on the edges in
G and also on the data being modelled, which can be discrete,
continuous, or a combination of both. The choice of these
types affects the conditional probabilities learning strategy. For
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discrete data is necessary to learn the conditional probability
tables (CPTs), where each one describes the probabilities of
each state of a variable given its parents’ states, resulting
in a non-parametric model. For continuous ones, some class
of probability distributions (e.g., Gaussian) must be assumed,
and their parameters must also be estimated. This learning
procedure can be performed by maximum likelihood or also
a Bayesian estimation [11]

With a complete BN model learned, it is possible to use
it to compute the conditional probability distribution of an
unobserved variable given some evidence - P (Xi | e), where
e are the observed variables states. The unobserved variable
can also be estimated, which is the value that maximises the
posteriori probability distribution:

x̂i = arg max
xi

P (Xi | e). (2)

IV. MATERIALS AND METHODS

A. Smart Meter Data

The Irish smart meter data used in this study is publicly
available and is the result of the smart metering electricity
customer behaviour trials performed by the Irish Commission
for Energy Regulation (CER) [12]. The full data set includes
over 5,000 Irish homes and small and medium enterprises,
and comprises to active power consumption records from 1st
July 2009 to 31st December 2010 with a 30 minutes sampling
rate, together with questionnaires and survey responses about
households occupants and electricity usage aspects features,
and individual customers’ classification with type (residential
or enterprise), tariff scheme, and tariff incentive stimulus.

Besides the power consumption time series, the following
trials survey answers related to electricity usage and social
aspects were selected: number of inhabitants, social class
based on the occupation of chief income in the household,
and electricity use for cooking and house heating. These
were chosen considering the findings presented in [29], where
a factorial analysis of the variables related to social class
and electricity usage aspects was carried out to model their
relationship with energy consumption. An important aspect
is that information about specific appliances or inhabitants’
habits was not used. The respective temperature for the instant
of power consumption measures, which was showed as a
relevant feature for household consumption LF by [8], was
also used and was obtained through the Irish Meteorological
Service [30].

B. Data pre-processing

The power consumption data from CER smart meter
project [12] was first filtered to represent only the meters
for households that belong to the tariff and stimulus control
group, and that answered the survey, resulting in 929 metered
households. After that, 59 evenly spaced dates were chosen,
starting from 2009-08-01 and ending at 2010-11-21. For each
one of these dates two data set were formed, one to learn
the VSTLF model consisting of two weeks of measurements
starting at 00:00:00 in the dates previously mentioned, and

the other composed of the next day measurements to test the
model. This process resulted in 59 pairs of learning and test
sets. In this step of generating the learn and test sets, the smart
meters that present missing values were removed.

First, the power consumption values at each train and test
sets were normalised by dividing the consumption by the
respective household average consumption observed in the
train data set. Then, similar to [18], the normalised con-
sumption was then discretised. The use of discretised values
was motivated by the application of discrete BNs, which are
a non-parametric model that can be adequate to different
data behavior without modifications. This aspect was already
highlighted in [18], where a comparison between discrete and
Gaussian BN for modelling households’ electricity consump-
tion indicated equivalent results. Here, we use a quantile-based
discretisation due to its capability to preserve the intervals
meaning independently of data drift [31], with 100 intervals
calculated from the train set. These intervals were also used
to discretise the normalised test set.

With the discrete consumption data, the temporal associ-
ations in the consumption time series were investigated by
using mutual information (MI). This was done similar to other
studies [32], [33], [34], [35], and the MI measures the amount
of information that the original time series contains about its
lagged version calculated as:

Ik (Ct;Ct−k) =
∑
x∈<

∑
y∈<

p (x, y) log
p (x, y)

p (x) p (y)
(3)

where Ct is the consumption at time instant t, Ct−k is the
consumption k samples before t, p(x, y) is the joint probability
mass function of Ct and Ct−k, p(x) is the marginal probability
mass function of Ct and p(y) is the marginal probability
mass function of Ct−k. The higher the MI (Ik) value, more
information can be obtained about Ct from Ct−k, i.e, due to
the knowledge of Ct−k the uncertainty of Ct reduces [36].
The mutual information was used to choose how many lags
(past power consumption values) should be included in the
learning set that then is used to fit the BN model during the
learning process described in the following Subsection.

The temperature values were also discretised, but using 30
equal size intervals. These intervals were calculated using the
temperatures observed in the train set period and were also
used to discretise the temperature for the respective test set.
The discretised power consumption and past consumptions
with higher mutual information, temperature, time index, and
the survey responses compose the data used to learn the BN
models for each train set.

C. Load Forecasting trough Bayesian Networks

The proposed VSTLF consists of an initial training stage,
where learning is performed by using the pre-processed past
information gathered in each one of the learning sets for
all households. This process results in an unique BN model
BNC = (GC ,ΘC) that relates the discretised load demand at

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020



each time sample (Ct) with the remind of variables (vertices)
in GC for each learning set:
• Ct−k: the discretised consumption k samples before t that

presented the higher MI (Ik) values;
• Tind: the time index of each sample, ranging from 1 to

48 representing half hour steps during a day;
• DT : the current day type (weekday or weekend);
• Temp: the discretised temperature values;
• Features from Survey (F− Survey): the number of

inhabitants (NI), the social class (SC), electricity use for
house heating (HH) and cooking (EC).

The edges in E, that represent the relationship among these
variables, were obtained by a score-based structure learning
method. The tabu search heuristic, which is capable of es-
caping from local optimums, was used together with the AIC
score, which tends to result in models with a good predictive
performance [37].

With the GC learned, the ΘC can be obtained from the same
data by respecting the dependencies described in E. As the
consumption data was discretised, each θi ∈ ΘC will be a
CPT describing the probabilities for each Xi state conditioned
to its parents’ states. In our approach, Bayesian estimation
of θi was used, where a prior distribution πi is combined
with the relative frequencies observed on data. This πi was
assumed a uniform distribution and can be interpreted as an
imaginary sample [24], [38] that is combined with observed
data during the relative frequencies calculation P̂ (X,Pa(Xi))
and P̂ (Pa(Xi)), which are used to calculate the CPTs in ΘC .

Following the learning of BNC , the inference procedure,
i.e., the forecasting itself, was performed by averaging like-
lihood weighting [11], which consists of weighting the ev-
idence by their likelihood during a forward sampling of
BNC . The sampling starts on the variables without parents
and forward until sampling from the ones without children,
and then the simulated observations are used to estimate
P̂ (Ci

t | e). The forecasting stage uses the learned BN together
with the latest sampled information to estimate the next
demand value Ci

t for the i-th household given the latest
sampled values {Ci

t−k, T emp}latest and the known features
{Tind, DT,F− Surveyi}. After that, the discrete consump-
tion forecast at t for the i-th household (Ĉi

t ) is the value that
maximises the estimated posteriori.

In Fig. 1, a summary of the steps described above in this
section are presented as a Flowchart divided in three parts,
Data pre-processing, BN structural and parameters learning,
and the load forecasting stage.

D. Performance Evaluation

The evaluation of the VSTLF model was performed by
metrics already used in other studies that addressed multiple or
individual household load forecasting [8], [18], [5], [9], [10]:
The Normalized Root Mean Squared Error (NRMSE), which
balances penalization of large forecast errors and forecast data
variability showing how well the model is forecasting the
real mean; The Mean Absolute Error (MAE) and the Median
Absolute Error (MedAE), this last being robust to outliers,

Fig. 1. Flowchart of the proposed method for load forecasting of households
using the presented BN approach.

and both providing a value in the same scale of the forecasting
quantity, in this case, kWh; and the Mean Arctangent Absolute
Percentage Error (MAAPE) that measures the slope of the
hypotenuse formed by the absolute forecast error and the real
value [39]. These are computed as follows:

NRMSE =

√
1
N

∑n
i=1 (yi − ŷi)2

ymax − ymin
, (4)

MAE =
1

N

N∑
i=1

| yi − ŷi |, (5)

MedAE = median (| y1 − ŷ1 |, . . . , | yn − ŷn |) , (6)

MAAPE =
1

N

N∑
i=1

arctan

(
| yi − ŷi |

yi

)
, (7)

where ŷi is the forecast value, yi is the real value, N is the
number of forecasts realised, ymax and ymin are the maximum
and minimum values observed in the test set.

When evaluating household load forecasting, the use of the
widely recognized evaluation metric Mean Absolute Percent-
age Error (MAPE) faces some issues that are related to an
intermittent aspect because of low, or almost zero, load values
during different instants [7], resulting in infinite or very large
numbers inside the summation. This issue was the motivation
of using the MAAPE [39], an alternative metric to the absolute
percentage error but from a different perspective that can
handle the intermittent behaviour of households load.

In addition to performance evaluation by such metrics, the
proposed BN was also evaluated by comparison with the
following methods: Persistence technique [40], which assumes
the next value will be equal to the previous one observed;
Multilayer Perceptron (MLP) that is a class of feedforward
ANN method [8], [41] implemented using the scikit-learn
python package [42]; and Hidden Markov Model (HMM)
with Gaussian emissions [43], [44] implemented using the
hmmlearn python package. All these models were learned and
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evaluated in the same manner as the BN model, this learning
step is the grey part of the flowchart presented in Fig. 1.

V. RESULTS

MI analysis highlighted a pattern present in the households
consumption time series. This was used to define the past
consumption features Ct−k that composes the data used during
the BN models learning and LF. This analysis indicated that
values at a half-hour before (Ct−1), one hour before (Ct−2),
and an hour and a half before (Ct−3) together with the same
consumption in the same instant at the past day (Ct−48) are
the ones with higher MI. Important to mention that this pattern
already had been reported for other power consumption time
series at different aggregation levels [45], [46], [47]. Our
approach does not use the MI during BN model learning,
but the past power consumption values with higher MI values
compose the learning and test sets.

Fig. 2 illustrated the MI of three households’ power con-
sumption time series for different lag values. The first lag
(Ct−1) is the one with the higher mutual information. The
MI decreases until around the lag 24 (12 hours before), and
then increases until a peak at lag 48 (24 hours before), and
after the lag 48, this behaviour is periodic with cycles of 48
lags. The MI analysis also highlighted that exists variability in
how consumption is related to past consumption measures for
the households, reflecting the diversity of power consumption
profile present in the data set.
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Fig. 2. Mutual information for the discrete power consumption time series
of single households at different lag values. The scale on the y-axis is
logarithmic.

Following this, these past values (Ct−1, Ct−2, Ct−3, Ct−48)
composes the final data set together with the consumption Ct

at the time index Tind and, DT, Temp, together with the survey
responses NI, SC, HH, and EC. The Fig. 3 illustrates the DAGs
GC obtained for two learned sets, where is possible to note
the relationship between these variables in both graphs, as the

survey responses and the electricity usage, the consumption at
a time index and past consumption values, and the indirect
association between consumption and temperature through
the time index. Besides some differences, these relationships
were consistent with the structures learned from the different
training sets.
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HH EC
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��

DT

���� Temp��−1

a) Learning Set Day: 2010-11-04

��−2
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DT

���� Temp��−1

b) Learning Set Day: 2010-10-05

Fig. 3. BN structures obtained for two different train sets. Besides the
difference in some edges, the structures highlights a persistent relationship
among the used variables. The gray nodes are related to past consumption
information, and the Ct node is highlighted with a bold border.

With the BN models fitted for each learning set and the
necessary evidence {Ci

t−k, T emp, Tind, DT, F − Surveyi}
present in the test set, the LF of the next Ci

t was carried
out. This same approach of model learning was performed for
the persistence, ANN, and HMM forecasting methods. Before
presenting the results and evaluation metrics for these four
methods using the complete test set, an illustration of two
forecasts performed by them is presented in Fig. 4.
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Fig. 4. Illustration of load forecasting for the proposed BN method and the
persistence, HMM, and ANN for two households with different consumption
patterns at one test set.

As the plots highlight, the HMM forecasts mostly a con-
sumption equals to zero, which is the value with a higher
probability of occurrence in the power consumption time
series. The BN, persistence and ANN methods resulted in
better forecasts, being the ANN the one with the worst result
among them, while the BN forecasting capability is better than
the persistence one. The persistence provides good results as
a consequence of the slow variability of the households power
consumption and the presence of intervals with constant zero,
or near-zero, consumption. However the BN model showed
better accuracy in handling such slow variability, including
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the different peak demands, as in the evening for ID:1494,
and in the lunchtime for the ID:1239, and also the low values.
This reflects the generalization capability of the proposed BN
model, which was learned using the data of all the households
and without knowing their ID.

In Fig. 5, a box plot of the observed errors in kWh for
forecasting of the 48 next power consumption in each test set
and for each forecasting method is presented, which resulted
in 59 evaluations for each method. The errors for the ANN
resulted in the highest values, followed by the HMM. We can
also observe that the BN and persistence methods resulted in
the lowest absolute median errors (smaller than 0.5 kWh).
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Fig. 5. Boxplot of the observed errors during the forecast for the 59 test sets
using the proposed BN, and persistence, HMM and MLP ANN.

An exciting aspect present in these forecasting errors visu-
alisation is that the error increases for dates near to the year-
end and beginning for the BN, persistence and HMM. This
phenomenon was also present in [9] results for this same data
set. A hypothesis about such increased error is the occurrence
of extremes winter on 2009-10 [48] and 2010-2011 [49] in
Ireland. These extreme weather events naturally contributed
to an unusual electricity consumption increase in households’
electricity usage during these periods. This is a consequence
of more time inside the houses using more energy, which
includes cooking, and greater energy demand for house and
water heating.

In Table I, a summary of the values observed for the
forecasting performance metrics NRMSE, MAE, MedAE and
MAAPE is presented for the BN and the other three forecast-
ing methods used for comparison. The bold values indicate
which method resulted in the lowest median and average value
for each performance metric. The ANN model did not result in

any of the lowest values observed for all the metrics calculated.
Another important point is that the HMM, which forecasts
the load as zeros due to its higher probability of occurrence,
resulted in the smallest MAE median and average values.
The persistence method resulted in the smallest MedAE and
MAAPE values, being the observed values of such metrics
for the BN slightly higher, and the BN presented the smallest
NRMSE values.

By evaluating these metrics and the Figs. 4 and 5, it is
evident that the choice of a metric to evaluate the forecasting
of such high intermittent time series may result in erroneous
interpretations, as the better performance of the HMM indi-
cated by the MAE. Another point is the good performance of
the persistence method indicated by the MedAE and MAAPE,
with values slight better than the ones observed for the BN
method. This is directly related to the fact that these two
metrics are robust to extreme errors, which naturally happens
for persistence forecasting when there are fast changes in the
time series [40]. The NRMSE, which penalises these extreme
errors, indicated that the proposed BN resulted in the better
forecasting.

TABLE I
PERFORMANCE METRICS CALCULATED USING THE KWH FORECAST OF

HOUSEHOLDS’ CONSUMPTION FOR THE 59 TEST SETS USED FOR VSTLF.

Bayesian network

Error Metric NRMSE MAE(kWh) MedAE (kWh) MAAPE

Median 0.0877 1.0085 0.1540 0.5035

Average 0.1962 1.6500 0.1667 0.5001

Std 0.2615 1.5550 0.0338 0.0378

Persistence

Error Metric NRMSE MAE (kWh) MedAE (kWh) MAAPE

Median 1.1037 1.0931 0.1450 0.4395
Average 2.4453 1.901 0.1457 0.4377

Std 3.1605 1.9741 0.0101 0.0143

HMM

Error Metric NRMSE MAE (kWh) MedAE (kWh) MAAPE

Median 0.3745 0.8964 0.4120 0.6863

Average 0.3755 0.9251 0.4373 0.6867

Std 0.0440 0.1355 0.0780 0.0112

MLP ANN

Error Metric NRMSE MAE (kWh) MedAE (kWh) MAAPE

Median 0.6884 1.0872 0.2644 0.5892

Average 3.3800 6.7540 0.2911 0.6103

Std 8.2716 20.0163 0.1166 0.1305

In summary, the proposed BN LF method resulted in better
forecasting as indicated by the smaller NRMSE and the similar
results for MedAE and MAAPE with the persistence method,
which is in line with the errors presented in Fig. 5 and the
forecasting illustration in Fig. 4. This reinforces the capability
of the BN model to provide a coherent and generalised forecast
for over the 900 residences used here. Besides these reported
error measures, the computational times for our model learning
and the execution of the VSTLF presented average values of
19 seconds, value observed on an i7@3.4 GHz desktop with
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12 GB RAM and using bnlearn version 4.4 with R version
3.5.2.

A study that is directly comparable to ours is [18], where
a BN was also used but for household demand prediction in
a random divided data set without using the temporal sorting
of consumption during prediction tests, i.e., this is not a load
forecasting study. They reported a single NRMSE of 0.1182
when making an individual prediction for 25 households, and
our model resulted in a median NRMSE of 0.0877 for over
900 households, a performance 25,8% better and using a data
set 25 times bigger. It is important to remember that load
time series at household level presents higher uncertainty and
volatility compared to medium and high voltage power sys-
tems or aggregated load, making it an even more challenging
forecast task, these factors become more relevant as it is a
single BN model for hundreds of homes.

The challenge investigated in this study is related to fore-
casting individual household consumption based on a general
model obtained by data-driven methods and historical data of
consumption. We presented a single model that can handle the
VSTLF of over 900 households without using their identifica-
tion and using only four features that are related to households’
socioeconomic electricity usage aspects together with the two
past weeks of power consumption.

Other studies provided similar or even smaller forecasting
errors than we presented here but at the cost of a large amount
of data to model learning, i.e., use all available previous con-
sumption data to learn a model and perform load forecasting,
or models developed for individual building forecasting or
also using information as household inhabitants routine or
household identification. These peculiarities highlight aspects
related to computational resources and scalability issues in the
sense of forecasting a higher number of residences, and also
privacy issues.

VI. CONCLUSIONS

This paper presented an approach to perform multiple
households VSTLF without using load aggregation by a single
generalist model together with multivariate data. A BN was
used to model the relationship among the variables, which are
past consumption measures, the households’ electricity usage
and socioeconomic aspects, and the temperature. The model
VSTLF capability was evaluated for different days present
in a real consumption data of 929 households and collected
during a year and a half. It was also compared to other three
forecasting methods: persistence, ANN and HMM.

As illustrated in the results, the proposed approach showed
to be capable of generalising the power consumption patterns
of multiple households. The proposed method presented better
performance, as reflected in the 10 times smaller NRMSE
together with the small differences for the other metrics when
compared with the persistence, ANN and HMM. Furthermore,
this satisfactory forecast for different instants needed only
two weeks of past consumption data for model learning. This
reinforces the approach capability of generalising the power

consumption patterns of hundreds of households, allowing the
forecasting of different residences with a single model.

In addition, the model also is computationally efficient, the
experiments indicated that the model could be used in real
time, as the learning and forecasting run-time are in order
of seconds. This is related to the use of only two weeks
of previous load consumption to learn the model. The space
complexity is also low, as the model is composed of a directed
acyclic graph together with the conditional tables related to the
conditional dependencies requiring a small space to be stored.
All this can allow the embedding of such an approach in smart
meters or other “smart” components that can make use of the
information provided in real-time by the forecasting.

It is important to highlight that the resulting model presented
in this paper is specific to the set of households used in this
study. However, since Bayesian networks are a data-driven
approach, it should be applied to different data sets allowing
an in-depth validation of our approach to multiple household
VSTLF, which is one future research step, preferably using
other publicly available household power consumption data.
Future research also includes an optimisation of the variables
necessary to perform the multiple household VSTLF, the
exploration of the uncertainty around the estimation given by
the current model, and also the investigation of BN use in other
power systems forecasting problems, e.g., load forecasting in
other time horizons and energy aggregation levels.
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