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Abstract — This paper provides a survey of big data analytics 
applications and associated implementation issues. The emphasis 
is placed on applications that are novel and have demonstrated 
value to the industry, as illustrated using field data and practical 
applications. The paper reflects on the lessons learned from initial 
implementations, as well as ideas that are yet to be explored. The 
various data science trends treated in the literature are outlined, 
while experiences from applying them in the electricity grid 
setting are emphasized to pave the way for future applications. 
The paper ends with opportunities and challenges, as well as 
implementation goals and strategies for achieving impactful 
outcomes. 

Index Terms—Electricity grids, Analytics, Big data, Decision-
making.  

I. INTRODUCTION 
The definition of big data analytics in the electricity grid 

applications is involved. This is due to its broad scope and 
numerous data science approaches that may be considered 
under this umbrella (statistical analysis tools, artificial 
intelligence, machine learning, deep learning, etc.). The 
complexity also stems from the numerous approaches in 
different applications such asset management, operations, 
control, protection, market and planning decisions, among 
others. One underlying issue that makes it particularly difficult 
to delineate what constitutes big data analytics is the volume of 
data being considered in electricity grid applications today, 
which typically is at the terabyte scale, far from the petabyte 
scale that is considered as big data in some other domains. 
Finally, the concept of “data analytics” is also a bit misleading 
since most of the traditional applications in the electricity grid 
domain are based on the processing of measurement data, 
which may or may not be considered as data analytics in a big 
data context. As an example, the traditional approaches to state 
estimation and fault location would not necessarily qualify as 
big data analytics if they are only based on mathematical 
equations derived from physics. On the other hand, fault 
prediction based on data-driven models utilizing high-
resolution weather and outage data may qualify for big data 
analytics. As a result, this survey does not attempt to provide a 
rigorous definition of what constitutes big data analytics for 

power systems, but rather intends to emphasize the reported 
work that uses the latest advances in data sciences as applied in 
the electricity grid for specific applications such as asset and 
outage management, and integration of renewables.    

The earliest work on the use of big data in the utility industry 
was published in 2013 [1], but field demonstrations were 
reported only in the last few years [2]. The approaches surveyed 
in this paper are at the crossroads of novel data analytics 
techniques, added application benefits, and unique data sets or 
features used in the implementation. While the literature is 
saturated by papers focusing on novel data analytics 
approaches, the added benefit of our paper is in identifying the 
papers that have bridged the vast data analytics literature with a 
few applications that have demonstrated tangible benefits using 
actual utility data [3]. The data sets used for the applications are 
quite often traditional, and in a few instances, new data 
integration and management approaches were used [4]. 
Covering an emerging area in the electricity grid domain, the 
related papers are surveyed with an intent to define promising 
trends, and what may result in transformational ideas in the 
future [5]. While we recognize the contributions of other survey 
papers [2], [3], [5], [6], [7], [8] and recent books on the subject 
[9], [10], we did not attempt a rigorous approach of comparing 
our survey paper to such surveys to avoid any overlaps since 
the focus and context of our paper stems from our own 
deployment experiences and views that come from our own 
practical insights. 

To facilitate the educational component of the survey, we 
will introduce some basic concepts of what constitutes big data 
in electricity grid applications, and what are some of the 
traditional aspects of the data properties that uniquely represent 
the electricity grid domain. In doing so, some well-known facts 
about big data are framed using relevant electricity-grid-related 
examples. With the same goal, we offer a classification of the 
data analytics fundamentals and related implementation 
techniques. We also share experiences from the real-life 
implementations of big data analytics approaches and tools for 
electricity grids, focusing on the various engineering issues 
associated with the implementation of novel applications.  We 
then focus on specific applications reported in the literatures 
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and try to classify them based on their relation to the various 
uses in the electricity grid settings.  

The main contribution of the paper is in pointing out the key 
implementation issues, while at the same time providing a 
broad overview of the trends for selected applications. For 
future users, the paper gives a large number of references by 
researchers and electricity grid professionals but does not 
explore the level of their scientific contributions; the intent here 
is to trace the references associated with practical applications. 
Our classification provides easier access to the applications of 
interest rather than a guidance to the most relevant works in the 
general data analytics area. Some important works may not 
have been reported or we may have not been able to locate it 
due to worldwide publication spread.  

The paper is organized as follows: after the introduction in 
Section I, we focus on the importance and the feasibility of big 
data analytics in Section II, the challenges in Section III, the 
applications survey in Section IV, and the future opportunities 
and challenges in Section V. A representative list of references 
is provided at the end. 

II. IMPORTANCE AND FEASIBILITY OF BIG DATA 
ANALYTICS IN ELECTRICITY GRIDS 

A.  Impact of Big Data Analytics 
The changes in the electricity industry are unprecedented, 

including the shifts in the energy mix, more active customers, 
new devices and technologies, and evolving business models 
never seen before. These resulted in increased complexity and 
uncertainty, bringing to the fore new challenges as well as 
opportunities. At the core of addressing these challenges is the 
need for better decision-making in the grid operational and 
planning stages, including long-term investment and policy. In 
addition, the grid is being instrumented with capabilities for 
sensing and data acquisition resolution with orders of a 
magnitude higher than what was previously implemented. The 
new data with novel data analytics methods can support the 
electricity grid objectives of higher resilience, economic 
efficiency, and reduced emissions. The electricity grid data 
analytics emerges as the key factor that enables the technologies 
for better decision-making. It became a core industry capability 
and a strategic advantage to organizations who seek to innovate 
and provide higher levels of service quality and customer 
satisfaction. The applications of data analytics to the electricity 
grid are numerous and can be identified in many activities of 
the industry. Data analytics is, hence, a transformational step 
toward the future grid. 

B. Novel Data Sources 
Applying big data solutions in different electricity grids is 

focused on exploring emerging heterogeneous data sources that 
have distinct quality, spatial and/or temporal resolution, and 
information presentation. It is feasible to leverage these data by 
applying the following knowledge extraction approaches in 
different use case examples: (a) combining emerging and 
conventional data sources, e.g., by using data fusion theory 
[11]; (b) extracting and combining information from different 
modalities (e.g., images, texts, categorical statements) using 

multimodal learning [12] or a heterogeneous information 
network [13]; and (c) combining data from geographically 
distributed data sources, e.g., by using classical vector 
autoregressive [14] or deep learning [15] methods. 

Novel data sources are emerging in different domains: 

• The grid infrastructure: system operators are improving 
network observability by installing phasor measurement 
units (PMU) that can provide high reporting rate data (e.g., 
30 measurements per second of voltage/current magnitude, 
phase, and frequency) and remote terminal units (RTU) in 
substations and smart meters at the consumer level. 
Sensors for remote supervision of substations are also 
being tested for asset condition monitoring and quality of 
service improvement [16]. 

• Renewable power plants: the renewable energy industry is 
installing and operating monitoring sensors at the wind 
turbine and photovoltaic panel level, which generates a 
large volume of data (e.g., a wind turbine can have more 
than 100 sensors inside the rotor, which gather more than 
10,000 data points every second) that can be used for 
predictive maintenance (and reduce Operation and 
Maintenance costs); data from a grid of numerical weather 
predictions, geographically distributed sensors (e.g., wind 
turbines, pyranometers), sky cameras, and satellite images 
can be combined to improve power (and weather) 
forecasting skills in multiple time horizons [17]. In 
renewable generation forecasting, the scale of studies has 
also grown from a single site to over 100 sites [18]. 

• Consumer and social media: while at the early stages of 
deployment, the proliferation of the internet-of-things 
devices in smart homes and buildings were creating 
conditions for data-driven energy and non-energy services 
[19], whose impact depends on solving challenges such as 
data privacy/protection and consumer engagement. 
Moreover, the increased footprints of social media have 
enabled the power companies to better understand and 
engage customers than ever before [20]. Researchers have 
also tried to fuse Twitter data into power outage detection 
[21].  

• Electricity markets: Over the last few years in Europe, the 
electricity market transparency has improved noticeably, 
and after the publication of Regulation (EU) No 5 43/2013 
[22], the amount of publicly available data is increasing 
[23], including access to individual offers from market 
players (usually available with a delay of few months). The 
same trend is happening in the USA, with platforms such 
as the Form EIA-930 data collection that provides a 
centralized and comprehensive source for hourly operating 
data of the high-voltage bulk electric power grid in the 
lower 48 states. This open data can be used for different 
objectives: to improve the price forecasting skills by 
combining prices from different regions [24] or to assess 
the large-scale impact of renewable energy generation in 
cross-border power flow [25]. 



21st Power Systems Computation Conference
     

Porto, Portugal — June 29 – July 3, 2020 

    PSCC 2020 

• Environmental and ambient domains: the weather data is 
of paramount importance in predicting operating 
conditions, including faults. The data from ground weather 
stations [26], satellite [27] and radar resources [28] are 
readily available from government databases. Specialized 
sensor networks, such as the national lightning detection 
network in the USA [29], are also  sources of rather useful 
weather data. Several weather forecast services are also at 
our disposal for providing pre-calculated features of the 
weather data sets [30]. Additionally, data about vegetation, 
soil, animal migration, and other ambient conditions may 
be readily available from various other sources [31]. The 
means of utilizing high precision data by using specialized 
databases such as Light Detection and Ranging (LIDAR) 
or drone surveys are also reported in the literature [32]. 
Such data is not typically collected within the utility 
industry jurisdiction and constitute an outside data of great 
value to the industry. In load forecasting, the research 
frontier has moved from temperature collected at a single 
station to a variety of weather variables and multiple 
weather stations [33]-[35]. In solar power forecasting, sky 
image data are heavily used for cloud detection [36]. 

Researchers and practitioners nowadays focus on exploiting 
existing data and exploring emerging data sources and data at a 
larger scale to pursue improvements in electricity grid planning 
and operations. A large data set or a variety of data sources are 
not necessary to claim a research topic in big data analytics. 
There are many other important aspects of big data analytics, 
such as building algorithms that can leverage a high-
performance computing environment and expanding the size of 
models to capture detailed features in the data [37]. Another 
example is to use hourly load and weather data informed long-
term load forecasts, which are traditionally based on monthly 
data [38], [39]. A recent review article on smart meter data 
analytics listed 10 publicly available datasets for electricity 
demand [40]. Table I highlights some example data sources for 
general applications of power systems data analytics, with an 
emphasis on publicly available data to promote reproducible 
research. Such a list of datasets is increasing at a rapid pace 
under various open modeling approaches and data sharing 
initiatives. Such data is mostly related to electricity network 
measurements or properties.  

In such studies, diverse data sets with quite different data 
properties. Fig. 1 illustrates data properties for an example of 
the use of one type of (synchrophasor) data. Examples of where 
merging diverse data sets created value may be found in the 
reported work on outage prediction [41]. Table II gives 
examples from a particular geographic region (USA). Such data 
may be available in many other parts of the world from local 
government agencies or industry services. Unlike the data in 
Table I, this data is characterized by not being directly related 
to power system measurements or properties, yet is highly 
correlated to the data in Table I. The importance of big data 
properties depicted in Fig.1 is that many such properties may 
be found in datasets used in an electricity grid application, 
which creates non-trivial data integration challenges.  

C. Important Considerations when Creating Datasets 
How the data sets are created is quite important for big data 

analytics applications due to additional considerations such as: 

• Spatiotemporal correlation and synchronism 
• Scalability 
• Missing data 
• Bad data diversity 
• Various types of uncertainties 

How each of these considerations reflect on the big data 
applications in the electricity grid is outside the scope of this 
paper, but certainly is worth exploring as new data sets get 
added and merged. 

III. BIG DATA ANALYTICS CHALLENGES 

A. Data Sciences Foundations 
The goal of data science is to extract value from data. The 

steps of the data management life cycle include data collection; 
preprocessing (exploration, sampling, dimensionality 
reduction/feature selection, feature creation, transformation, 
cleaning, and integration); analytical processing (modeling, 
which often includes multiple building blocks); interpretation; 
and reporting results [61]. The key skills needed in this area are 
often viewed as multidisciplinary at the intersection of 
computer science, mathematics, statistics, and the problem 

TABLE I.  EXAMPLES OF OPEN-SOURCE DATA SETS 

Data source Application areas 
GEFCom2012 [42] Load forecasting; wind power 

forecasting 
GEFCom2014 [43] Load forecasting; price 

forecasting; wind power 
forecasting; solar power 

forecasting 
GEFCom2017 [44] Distribution level load 

forecasting 
Irish data [45] Smart meter data analytics 

ARPA-E GRID DATA projects 
[46] 

Power system analysis 

My Electric Avenue [47], [48] Electric vehicles 
EV Research @ Caltech [49] Electric vehicles 

ENTSO-E Transparency Platform 
[23], [50] 

Electricity markets 

European power system [51], [52] Power system models 

UK power system [53] Power system models 

Load dataset with grid data [54], 
[55] 

Load forecasting 

Sotavento wind farm, Spain [56] Wind power forecasting 

NREL wind integration toolkit 
[57] 

Wind integration 

Data sets for benchmarking solar 
energy forecasting methods [58] 

Solar energy forecasting 

Photovoltaic hourly power 
measurements and geographical 

grid (169 equally distributed 
points) from the Weather Research 
and Forecasting model [59], [60]. 

Solar energy forecasting 
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domain. On the technical side, major challenges are typically 
related to big data, artificial intelligence, and machine learning 
methodologies, while the process of applied data science could 
also require social sciences, communications, and business 
skills, and it has been suggested that this intersection should 
include additional disciplines [62]. 

A holistic view of data science emphasizes that data science 
is “more than a combination of statistics and computer science” 
as “it requires training in how to weave statistical and 
computational techniques into a larger framework, problem by 
problem, and to address discipline-specific questions” [63]. The 
same authors point out that data science requires: (1) 
understanding the context of data, (2) appreciating the 
responsibilities involved in using private and public data; and 
(3) clear communication on what can and cannot be inferred 
from a dataset.  

The core components of data science are machine learning-
based methods for finding patterns in data that may provide 
insights into the phenomena described by the data, and 
predictions regarding future events of interest. In machine 
learning, the objective is to learn a function that maps the given 
input data (explanatory variables) to the observed output 
(response). A simplified representation of reality created for 
this purpose, called a model, is used to estimate the unknown 
response for new cases based on observed explanatory variables 
of interest, and this process is called inference or, more simply, 
prediction. 

Machine learning techniques typically address applications 
where traditional analytics are inappropriate due to data size, 
high dimensionality, heterogeneity, diversity, or other 
challenges. Methods are developed to address various aspects 

of these challenges. In some methods, independence of data 
records is assumed (e.g., when data types are multidimensional 
numerical tables, tables with categorical or mixed attributes, or 
text). Otherwise, specialized data science methods have been 
developed to model implicit or explicit dependencies in data 
sets common in time-series, discrete sequences, or spatial, 
spatio-temporal, or network applications.  

Machine learning objectives are often grouped into 
descriptive tasks and predictive tasks. Descriptive tasks aim to 
discover interpretable patterns that describe past data, and 
predictive tasks are those where the goal is to identify patterns 
observed in training data in order to estimate future predictions 
of risks and other outcomes. Descriptive tasks are usually 
unsupervised, meaning that only explanatory variables are 
considered in the analysis. Common descriptive objectives 
include data clustering [64], [65], association discovery [66], 
and detection of deviations from normal behavior, including 
extreme value analysis, outlier detection, and identification of 
emerging patterns [67]. Prediction tasks are supervised, such 
that they require not only explanatory variables but also the 
value of the dependent variable that is being predicted. Practical 
examples include risk assessment [68] and diagnostics [69].  

There are also semi-supervised [70] and self-training methods 
[71], where training data includes some labeled data and much 
more unlabeled data. 

In classification, the response variables being predicted are 
a class (e.g., one of several kinds of data labels), or in the case 
of regression, it is a continuous value. One of the commonly 
used approaches for classification is the induction-based 
decision tree. Hunt’s algorithm [67], one of the earliest decision 
tree methods, proposed the general procedure of partitioning 

 

Figure 1: Big data properties  
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data, based on the value of a single attribute and proceeding 
recursively on subsets if the class is not sufficiently pure at the 
subsets. Many methods have been proposed to measure a data 
subset impurity and to determine the next split (e.g., entropy in 
CART [72] or Gini index in ID3 [73] and C4.5 [74]) as well as 
to prune the tree, thereby improving model generalization. 
Decision trees are easy to interpret, are quite inexpensive to 
construct, and are very fast at classifying unknown cases. They 
are also robust to noise and can handle redundant or irrelevant 
attributes, but they do not account for interactions between 
attributes.  One of the limitations of decision trees is that they 
require pruning, as otherwise they grow too big resulting in 
overfit problems. This limitation is successfully addressed by 
Random Forests, built as an ensemble of decorrelated decision 

trees [75], [76]. This ensemble is inspired by the Bagging 
method, an aggregation method based on bootstrap sampling, 
developed for reducing variance without enlarging bias [77]. In 
Random Forests, this idea is further extended by limiting each 
node to consider only a small random subset of attributes. The 
resulting solution is empirically shown to be more accurate than 
the AdaBoost algorithm, which is an effective ensemble-based 
classifier that in training adjusts to the weight of an observation 
based on the previous classification [78]. 

A popular alternative technique that can handle interactions 
among explanatory variables is to classify a new case by 
computing distance to k-nearest neighbors in the training set 
and to predict the class based on a majority or a weighted 

TABLE II.  EXAMPLES OF THE DATA SETS AVAILABLE FROM GOVERNMENT AND COMMERCIAL SOURCES [79] 

 VELOCITY VOLUME 
 Source Data Type Temporal 

Resolution 
Spatial 

Resolution Measurements 

 
 
 
 
 
 
 
 
 
 

V 
 
 

A 
 
 

R 
 
 
I 
 
 

E 
 
 

T 
 
 

Y 

Automated Surface 
Observation System Land-Based 1 min 900 stations 

Air temperature, Dew point, Relative humidity, 
Wind direction, Speed and gust, Sea level pressure, 

Sky, Precipitation 

Level-2 Next 
Generation Weather 

Radar 
Radar Data 5 min 

160 high-
resolution 

Doppler radar 
sites 

Precipitation and atmospheric movement 

NOAA Satellite 
Database Satellite Data Hourly, daily, 

monthly 4 km 
Cloud coverage, Hydrological observations 

(precipitation, cloud liquid water, total precipitable 
water, snow cover…), Pollution monitoring 

Vaisala U.S. National 
Lightning Detection 

Network 
Lightning Data Instantaneous Median location 

accuracy <200m 

Date and time, Latitude and longitude, Peak 
amplitude, Polarity; Type of event: Cloud or cloud 

to ground 

National Digital 
Forecast Database 

Weather Forecast 
Data 3 hours 5 km 

Wind speed, direction, and gust, Temperature, 
Relative humidity, Tornado probability, Probability 

of severe thunderstorms, etc. 
Texas Parks & Wildlife 

Department 
Texas Ecological 
Mapping System Static 10 m Distribution of different tree species 

Texas Natural 
Resources Information 

System 
NAIP Year 50 cm – 1 m High resolution imagery 

National Aeronautics 
and Space 

Administration 

3D Global 
Vegetation Map Static 1 km Canopy height data 

National Cooperative 
Soil Survey gSSURGO Static 10 m Soil type 

Utility Data 

Historical Outage 
Data Instantaneous Feeder section Location, Start and end time and date; Number of 

customers affected; Cause code 
Tree Trimming 

Data Day Feeder Feeder location, Date, Trimming period, Number of 
customers affected, Cost of trimming 

Network GIS 
data Static Infinity 

(shapefile) 

Poles: Location, Material/class, Height 
Feeders: Location; Conductor size, count, and 

material; Nominal voltage 
Historical 

Maintenance 
Data 

Day Tower location 
Start and end date and time, Location, Type 

(maintenance, replacement), Cost, Number of 
customers affected 

Insulator asset 
data Static Infinity 

(shapefile) 
Surge Impedances of towers and ground wires, 

Footing resistance, Component BIL 

In-field 
measurements Instantaneous Tower location 

Leakage current magnitude, Flashover voltage, 
Electric field distribution, Corona discharge 

detection, Infrared reflection thermography, Visual 
inspection 
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majority of the identified k-neighbors whose class is known. 
This is a lazy learning method, since the model is not built 
explicitly, and inference time required to classify a new case is 
quite large. It also requires a comparison of each new data point 
to each data point in the training set. In addition, this technique 
is not easy to use when many attribute values are missing, since 
in such cases, the distance-based method of determining nearest 
neighbors could be unreliable. Some of these limitations could 
be overcome by proximity graphs, in which nodes are 
connected if certain geometric conditions are satisfied. In such 
a formulation, various efficient graph algorithms (e.g., 
minimum spanning trees and triangulations) could be used to 
identify nearest and relative neighbors more efficiently [80]. 

An alternative classification approach that is 
mathematically more rigorous is to estimate the posterior 
probability of the target class using Bayes’ theorem. A simple 
but elegant and robust approach, called Naive Bayes, assumes 
that the attribute values are conditionally independent of each 
other, given the class label y. In such a case, the class-
conditional probabilities of all the attributes can be factored as 
a product of the class-conditional probabilities of every 
attribute. The approach is robust to noise, missing values, and 
irrelevant attributes. However, conditional independence 
among explanatory variables is a strong assumption that is not 
valid in many applications. For such scenarios, a class of 
probabilistic graphical models called Bayesian Belief Networks 
were developed by modeling conditional dependencies via 
directed acyclic graphs. The exact inference on such graphs is 
NP-hard [81], and therefore, their applications are limited to 
smaller numbers of attributes or to special types of graph 
structures.  

Another effective probabilistic classifier is logistic 
regression [82]. We have successfully used this method to 
predict weather-related power outage probabilities [83]. 
Assuming a two-class problem (the response y = 0 or 1), this 
approach avoids directly estimating the conditional probability 
of an instance, but instead estimates the ratio of posterior class 
probabilities P(y=1|x)/P(y=0|x). A great advantage of logistic 
regression as compared to k-nearest neighbors is that it is 
applicable to high-dimensional problems, since the method 
does not rely on measuring similarities between data points. 
Another benefit of this approach is that weight parameters 
correspond to individual attributes and, therefore, provide fairly 
easy interpretability. Still, the presence of a large number of 
irrelevant attributes is a challenge for logistic regression, and 
this method is not applicable to classifying cases with missing 
values, which could be a serious limitation in practice.  

The logistic regression model can be viewed as a case of 
generalized linear model. Other representationally powerful 
models from this category are Support Vector Machines (SVM) 
and Multilayer Neural Networks (MNN). In SVM, the 
optimization problem is formulated as finding a maximum 
margin separating the hyperplane for which a large region exists 
on each side of the decision boundary [84]. This is formulated 
as a constrained nonlinear programming problem expressed as 
a function of the coefficients of the separating hyperplane, 
which is solved using the Lagrange multiplier method. For non-

linear classification, data is implicitly transformed into a high-
dimensional space, where the problem is linearly separable. 
This is achieved by using the kernel trick, so as to reduce the 
problem effectively to a linear classification situation. Using 
carefully selected kernels (Gaussian, polynomial, or sigmoid) 
allows the approximation of arbitrary decision boundaries. The 
main benefits of the SVM approach are that it is robust to noise 
and reduces overfitting while finding the global minima of the 
objective function. However, the computational cost of SVM is 
high, and it is still challenging to use this model when 
descriptive variables are partially missing in observed data.  

Multilayer feed-forward neural networks (FNN) are also 
used successfully for classification in a variety of challenging 
applications [85]. For example, we have successfully trained 
FNN to discriminate between power transformer magnetizing 
inrush and fault current [86]. This model has at least one layer 
of hidden units, each computing a nonlinear smooth and 
differentiable function of a weighted input sum (e.g., sigmoid 
function). In this model, the problem of updating the parameters 
when an error is observed at the output is commonly solved by 
error backpropagation from the output toward the previous 
layers. In this process, the error of a node in the hidden layer is 
estimated as a function of the error estimates and weights in the 
nodes in the previous layer, and this value is used to update the 
weights of this hidden node by computing an error gradient with 
respect to the weights in the node [87]. FNNs are able to 
approximate arbitrary functions, and hence are 
representationally more powerful than SVM. However, when 
designing a network, overfitting must be carefully addressed. 
Also, noise in data could cause training problems, as the model 
may converge to a local minimum, and the training process 
might require a long time, limiting practical applications. 
Another problem with classical FNN is that learning deep 
networks is very difficult, due to the compounding effect of 
saturating the sigmoid activation function when 
backpropagating small errors, which results in very slow 
convergence. Huge progress in addressing this issue, called the 
vanishing gradient problem, has been made in recent years. 
This, together with progress in GPU-based distributed 
computational infrastructure and availability of very large 
datasets, has allowed the development of effective deep neural 
networks, which significantly outperformed all the alternatives 
in many challenging applications, including computer vision, 
natural language processing, speech and audio recognition, and 
healthcare informatics [88]. Many deep learning architectures 
were proposed to handle various data properties. Some of the 
established solutions commonly applied to a wide variety of 
datasets include convolutional neural networks for grid-based 
data (e.g., imaging) [89] and recurrent neural networks for 
sequences and temporal data [90]. 

In power systems, data is often observed over space and 
time, and therefore, more advanced graph-based structural 
regression methods are used to exploit structural dependencies. 
For example, we have used structured learning in Gaussian 
Conditional Random Fields to assess the risk of insulation 
breakdown for a given exposure and associated weather threats 
in a power network [91]. The latest research in deep learning 
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[88], [92], [93] suggests that a broad range of applications, 
including structured regression, could benefit from learning 
latent representations for input data. In our study [94], learning 
representations for power system substations, based on their 
spatial proximity, was greatly beneficial for predicting power 
outages and estimating outage probabilities. In such an 
approach, nodes of a graph are embedded in a lower-
dimensional space, where standard machine learning methods 
could be more easily applied. The embedding algorithms aim at 
conserving graph structure and simplifying the learning models 
by moving away from graph representations. An advantage of 
using such methodologies is that they can potentially uncover 
more complex spatial dependencies that include some long-
range interactions in addition to influences of the local 
neighborhood.  

The node embedding process represents the original graph 
in a new feature space, which best-describes the spatial 
relationships of the nodes in the original graph. This 
characteristic of the node embedding aims to capture the 
essential relationships of the original graph structure while 
simplifying representation to a lower-dimensional list of feature 
vectors.  

There are several algorithms to obtain such an embedding; 
Two commonly used algorithms are DeepWalk [95] and 
Node2Vec [96]. Both algorithms rely on community 
information obtained by random walks, which were used to 
learn latent space representations. In addition, DeepWalk is 
able to perform local exploration efficiently and can 
accommodate small changes in graph structure without global 
recomputation. Node2Vec is an algorithmic framework that 
generalizes the DeepWalk process to provide a flexible notion 
of a node’s neighborhood, which allows learning richer 
representations by effectively exploring diverse neighborhoods. 
This solution was successfully employed to develop a novel 
approach to solar radiation forecasting, based on spatial and 
temporal embeddings using the Node2Vec model for graph data 
[97]. This approach simplifies the learning models by moving 
away from complex graphs. The model was developed for 
forecasts ranging from 3 to 12 hours ahead. The model 
predicted solar irradiance with very high accuracy in the 
summer, when there are more clear sky days. During the winter 
months, the accuracy had a slight drop, but was still high and 
remained robust even when observational data was missing 
both spatially and temporally. 

B. Engineering Aspects 
While big data analytics relies on strong data science 

foundations, there are also several important aspects for those 
methods to be used in practice. Interacting with practitioners 
and those in the industry that try to rip tangible benefits from 
using data science, one often hears that the actual data science 
part may only consist 10% of the work, while 90% relates to 
setting up the workflow, data management (and storage) as 
well as computing aspects. Therefore, it is of utmost 
importance here to observe some of the engineering-related 
aspects of big data analytics. They have been defined as the 
main challenges for the success of big data analytics [98], [99].  

At the core of the concept of big data analytics is the 
underlying idea that the data to be handled is “big”. For an 
attempt at properly defining big data and its essential features, 
the reader is referred to [100]. Typical examples relate to the 
collection of PMU data, as well as high-resolution data at the 
asset level, (e.g., from wind turbines, Photovoltaic (PV) 
inverters, smart meters, etc.). The collection rate of these data 
is at the second to minute time scales, and for many 
geographical locations simultaneously, while also consisting 
of many different types of variables. In general, such data in 
the electricity grid includes point measurements, images, and 
possibly text. Some of these aspects of big data for power 
systems, from challenges to applications, were recently 
covered by [9]. 

In most of the scientific literature describing electricity 
applications and beyond, it is assumed that data is available 
and is of good quality. However cumbersome it may be, 
ensuring communication of data, ensuring data integrity, as 
well as assuring data quality, are necessary steps before 
designing and deploying a data-driven solution [101]. In 
contrast, those aspects related to data availability and quality 
have been considered for quite a while by the computer science 
community, for which a number of methodologies were 
proposed [102]. Data cleansing and modifications of datasets 
are then often involved, though one should be aware that these 
actions may actually affect the original information in the 
datasets, for instance in terms of its statistical properties [103]. 
For applications in the electricity markets related to renewable 
energy, a classical problem for instance is filling gaps in time-
series, i.e., there may be periods where data is simply not 
available, due to failures in logging, storing, or transmitting the 
data. To fill these gaps, various methods have been proposed, 
taking advantage of data surrounding that period, data with 
spatiotemporal dependencies (especially relevant for weather-
driven renewable energy generation), data availability at 
different aggregation levels, as well as physical relationships 
among variables of interest (e.g., in an optimal power flow 
problem). For a recent example related to electric load data, 
see discussion in [104]. 

Besides these data-related aspects, data-driven approaches 
used on large datasets require substantial computing power to 
solve the simulation and optimization problems involved.  To 
centralize the data, these problems can be solved through High-
Performance Computing (HPC), which is becoming 
increasingly common for the electricity grid and electricity 
market applications [105]. Notable examples include optimal 
power flow [106] and transmission-switching problems [107]. 
Solving those large-scale problems with HPC will involve 
some form of decomposition techniques, which have also 
become popular in power system operations, markets, and 
planning problems [108]. However, there may also be a 
number of applications for which this is neither possible, nor 
is it desired to centralize the data. In that case, similar 
approaches may be used to solve these problems in a 
decentralized manner, though most likely at the cost of 
increased communication burden due to the inherently iterative 
nature of distributed optimization approaches. Notable 
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examples include optimal power flow problems [109] and 
distributed learning for renewable energy forecasting [110]. 
Most likely in the future, relevant setups will not be fully 
centralized or fully decentralized and will be relying on cloud-
based, fog and edge computing [111]. 

Big data analytics is to be placed in the bigger picture of 
problem-solving. Indeed, in practice, it is only an additional 
tool to support operations and decision-making. Therefore, 
before investing in specific big data setups and analytical tools, 
the problem and related problem-solving approach should be 
well-defined. For example, if forecasts are there to support 
decision-making, the type of forecasts (e.g., deterministic or 
probabilistic) and the forecast products (resolution, 
normalization, etc.) should be decided upon based on the 
decision problem at hand. Also, going from data to analytics, 
there is often the need for an additional layer of extracting the 
right type and level of information from the raw data. This may 
be done based on filtering and smoothing, feature engineering, 
etc. A typical example would be that of event detection based 
on data streams, to then be used as input to some other 
analytical problems.  

Additional requirements may bring another level of 
complexity to big data analytics. A crucial requirement linked 
to the data itself (and related data streams) is how to handle 
cybersecurity and privacy in the electricity grids. Today, 
cybersecurity represents a crucial component of future 
distributed power systems, on which big data analytics may be 
performed [112]. Consequently, setups for big data analytics, 
as well as the tools employed, need to be robust to be able to 
withstand the removal of important data or falsification of data. 
Also, data privacy is of increasing concern because if the data 
being collected is shared, one could infer information about 
specific assets or consumers, which was never meant to be 

known. Privacy concerns are especially valid now that smart 
meters are being widely deployed [113], which is potentially 
allowing one to gain knowledge about consumer-habits for 
targeted marketing and criminal activities. Another key 
requirement relates to the need to have interpretable models 
and outcomes. This has recently triggered a new body of work 
related to interpretable machine learning and physics-informed 
machine learning. 

C. Decision Making Framework 
The use of big data analytics inevitably leads to enhanced 

decision making. Therefore, in the proposed data analytics, 
special attention is given to the visualization of the results. 

As an example, one approach used in the prediction of 
outages is to develop risk maps such as the ones shown in Fig. 
2. They represent the weather hazard, vulnerability, and the risk 
calculated as the product of the two 

A risk assessment framework is formulated by the United 
Nations Disaster Relief Office (UNDRO), which was explored 
recently by the United Nations Office for Disaster Risk 
Reduction (UNISDR) ) in their related report [114], was later 
adopted by the Federal Emergency Management Agency 
(FEMA) in the USA, since the main focus is on climate-related 
impacts to infrastructure, society, and environment. This 
introduces the State of Risk (SoR) as: 

Risk = Hazard × Vulnerability × Consequences = P(T) × P(C|T) 
× u(C), 

where P(T) is the Hazard or probability of a given threat 
intensity (T); u(C) is the Loss (social, economic, or 
environmental) associated to the level of Consequences (C), 
associated to the threat intensity (T); and P(C|T) is the 
Vulnerability or probability of experiencing a consequence 

 

Figure 2: Maps of hazard and vulnerability (left, respectively) resulting in the risk map (right) 
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level (C) given a threat intensity (T). The risk units are, 
therefore, expressed in the units of the losses. 

In this context, the decision making is related to an 
optimization process where objective function and constraints 
aimed at mitigation actions are defined. A broader framework 
for such decision making for the aforementioned examples of 
the outage prediction is shown in Fig. 3. 

IV. APPLICATIONS 

A.  Asset and Outage Management 
Competitive electricity markets, privatization, and 

regulatory or technical requirements mandate power utilities to 
optimize their operation, outage, and asset management 
practices and develop the requisite decision plans techno-
economically. In today’s utility practice, asset and outage 
management are handled by different groups and are viewed as 
long term vs. short term planning efforts, respectively. We have 
kept the discussion of such seemingly unrelated issues together 
to emphasize their close correlation in terms of the use of data, 
since outage management may utilize the same data as asset 
management and vice versa since the underlaying status of 
assets drives both applications:  

1) Asset management classification 
Asset management in electric power systems can be broadly 

classified into four main categories based on the possible time 
scales, i.e., real-time, short-term, mid-term, and long-term 
[115].  

Real-time asset management mainly covers the key power 
system resiliency principles and deals with the unexpected 
outages of power system equipment and grid disruptions. By 
enhancing situational awareness, the electricity grid operators 
can effectively monitor and control the system. Short-term asset 
management strives to maximize the rate of return associated 
with asset investments. The value mainly depends on the 
uncertain market prices through various market realizations. 
Market risk assessment is a key consideration, and the 
revenue/profit distributions are gained through a profitability 
analysis. Optimized maintenance scheduling falls within the 
mid-term asset management. It guides the maintenance plans 
toward satisfactorily meeting the system-wide desired targets. 

The efforts are focused on optimizing the allocation of limited 
financial resources where and when needed for an optimal 
outage management without sacrificing the system reliability. 
Extensive deployment of smart sensors and monitoring 
technologies is to be used for health and reliability assessment 
of system equipment over time and to optimize the maintenance 
plans accordingly [116]. The investment in power system 
expansion planning, as well as the wide deployment of 
distributed generations, fall within the scope of long-term asset 
management where the self-interested players, investors, and 
competitors are invited to participate in future economic plans. 

2) Weather impacts on outages 
Weather impacts on outages in power systems can be 

classified into direct and indirect [117]: 

 

Figure 3: Decision making framework for predictive risk assessment 
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• Direct impact to utility assets: This type of impact includes 
all the situations where severe weather conditions directly 
caused the component to fail. Examples are: lightning 
strikes to the utility assets, wind impact making trees or 
tree branches come in contact with lines, etc. These types 
of outages are marked as weather caused outages.  

• Indirect impact to utility assets: This type of impact accrues 
when weather creates a situation in the network that 
indirectly causes the component to fail. The examples are: 
hot weather conditions increasing the demand thus causing 
the overload of the lines resulting in line sags, increasing 
the risk of faults due to tree contact, exposure of assets to 
long term weather impacts causing component 
deterioration, etc. These types of outages are marked as 
equipment failure. 

3) Outage management background 
The ability to track multiple-weather threats synchronously 

as they develop and to assess associated multiple-consequence 
impacts to utility industry assets, infrastructure, and the lifelines 
they support is critical in the utility sector. Electricity grids are 
spread across wide regions with generation typically located in 
remote areas. Major consumption in metropolitan areas means 
that the transmission grid has to bring the power from remote 
generation sites to the consumption centers, and distribution 
systems must provide the utility lifelines to the individual 
customers. To accomplish this, the grid goes through different 
operating states (Fig. 4) [118]. The corresponding electricity 
market states are shown in Table III [119]. By combining asset 
and outage management, one deals with the impacts most 
effectively [94]. 

4)  Transmission line outage prediction  
The knowledge from historical data can be utilized to issue 

predictions of weather-related transmission outages 1-3 hours 
ahead. Spatial embeddings are added to the input data set [94] 
to capture the spatial interdependencies between nodes and 
events. Consider the example with historical outage data 

collected from Bonneville Power Administration (BPA) [120]. 
The Automated Surface Observing Systems (ASOS) program 
[26] data was used to collect the historical weather 
measurements for the following parameters: Wind Direction 
[degrees], Wind Speed [knots], Wind Gust [knots], 
Temperature [F], Dew Point [F], Relative Humidity [%], 
Pressure [mb], Precipitation/Hour [inch], and Present Weather 
Codes. The National Digital Forecast Database (NDFD) [121] 
was used to extract the historical weather forecast data that is 
used for the testing of the real-time outage probability mapping 
system utilized in the, insulation coordination study [41]. 

The optimal placement of line surge arresters is aimed at 
minimizing the overall risk of lightning-related outages and 
disturbances while staying within the required budgetary limits 
[41]. The network and its surrounding impacts are modeled 
using a multi-modal weighted graph that uses data coming from 
various sources. The developed risk model considers the 
accumulated impact of past lightning disturbances to produce a 
more accurate estimate of insulator strength and predicts 
insulator performances for the future lightning-caused 
overvoltage, using Gaussian Conditional Random Fields 
(GCRF) [122]. The predictive data-driven method for 
vegetation management in distribution is introduced in [123]. A 
model for spatio-temporal correlation of a variety of data is 
developed, which enables real-time analysis of the vegetation 
impact on the distribution feeders based on predictive risk 
maps. A prediction algorithm is based on the GCRF regression 
predictor. The optimization algorithm is used to find the most 
cost-effective dynamic tree trimming schedule that minimizes 
the overall risk of the network for each quarter.  

5) Transformer health assessment  
The traditional approaches for transformer health 

assessment were developed by using domain knowledge of the 
physical and chemical processes occurring inside the oil tanks 
of the transformer, later validated with empirical studies. Some 
examples are Duval’s triangle [124], IEC gas ratios [125], or 

TABLE III.  THE ELECTRICITY MARKET STATES. 

Type Configuration Market 
Parameters 

Normal All MPs* 
complete 

Within 
limits 

Emergency All MPs 
complete 

One or 
more 

parameters 
violate the 

limits 
Restorative Structure 

incomplete 
Within 
limits 

*MPs (Market Participants) include generator 
companies, transmission owners, load-

serving entities, and other non-asset owners 
such as energy traders.  

 

 
Figure 4: The Electricity Grid States 
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the Key Gas analysis [126]. The increasing data (e.g., periodic 
dissolved gas and oil analysis, sensors that collect real-time 
data, etc.) collected by electrical utilities motivated the 
development of data analytics methods based on supervised 
learning to classify transformer condition and type of fault. 
Some examples are multi-layered artificial neural networks 
[127], support vector machine [128], and Bayesian networks 
[129]. The failures of step-down transformers (22.9KV-220V) 
used in the distribution sectors in South Korea are studied in 
[130].  

The application of supervised learning algorithms faces the 
following challenges: (i) the majority of the algorithms offer 
low interpretability to decision-makers, which is a fundamental 
requirement in this problem; (ii) lack of available failure data 
with high quality; and (iii) labeled data about transformer 
condition in most cases is not available or is defined by a human 
(i.e., subjective classification of the condition). The use of 
unsupervised learning is an alternative and appealing solution, 
but the literature remains limited. The first approach of 
unsupervised learning was the Health Index described in 
reference [131] that summarizes the overall health of the asset 
by combining the results of operational observations, field 
inspections, and site and laboratory testing into a single index. 
However, the main limitations of this index are: (i) empirical 
definition of the weights for each criterion, and (ii) the lack of 
information about the type of fault. Other alternatives are 
clustering [132] and semi-supervised learning with Low 
Dimensional Scaling [133]. Moreover, research in deep 
learning can contribute to data augmentation [134] of 
transformer data and deliver new techniques for unsupervised 
learning like Siamese networks [135]. It is important to 
emphasize that we should expect a lower performance from 
unsupervised techniques when compared to supervised 
learning, but a larger application potential in real-world 
datasets. 

6) Predictions of catastrophic infrastructure damage 
causing outages 

Big data analytics may be used to predict catastrophic asset 
failures due to inclement weather events such as hurricanes, 
cyclones, tornados and tsunamis [136], [137]. Such studies are 
mostly related to the prediction of the infrastructure damage, 
including the number of toppled poles, destroyed substations, 
and other damages that require full reconstruction of the 
electricity grid infrastructure.  An implicit assessment is also 
associated with the outages since a reconstruction is needed first 
to restore the service. 

B. Smart Meter Data Analytics 
This application domain has a variety of use cases:   

• Applications of a single smart meter analytics 
• Applications of groups of smart meters 
• Smart meters connected to grid models  

 Today’s penetration of smart meters in the US alone 
exceeds 50%, and in some European countries over 50%, 
providing important opportunities for data analytics to enhance 
customer management and grid operations and planning. 

Smart meters provide readings of energy, power, and voltage 
at temporal granularities typically of one hour or 15 minutes. 
Electric utilities, energy services providers, customers, and 
researchers have identified numerous use cases for smart meter 
analytics such as forecasting, customer load profiling and 
classification, load estimation, and enhanced grid modeling 
[40]. When combined with other data sources and utility 
systems, smart meter analytics can further expand its benefits 
to utility operations enterprise-wide. A summary of smart 
meter application is illustrated in Fig. 5. 

Below, we provide a summary of the salient applications 
of smart meter data analytics with corresponding references. 
Some of the applications will be expanded in the following 
sections under separate titles. 

 
1) Load Forecasting 

The power industry has been using load forecasting for grid 
operation and planning and for customer management. Smart 
meter data caught the attention of researchers in the past 
decade for both point and probabilistic load forecasting [138], 
[139]. A more comprehensive treatment of this topic is in the 
subsection. 

2) Customer Load Profiling 
Load profiling refers to the classification of the historical 

readings of customer demand into groups based on their 
behavior. Clustering techniques such as k-means, hierarchical 
clustering, and self-organizing maps have been utilized for 
load profiling [140]-[142]. Time-varying models combined 
with clustering have been utilized to develop complex power 
load modeling using Advance Metering Infrastructure (AMI) 
data [143].  

3) DER Analytics 
A significant amount of distributed energy resources 

(DER) are being connected to the grid, including solar PV, 
energy storage, and electric vehicles. These resources within 
the grid create new challenges for utility providers including 
voltage variability [144], thermal limit violations, reverse 
flows, and impacts on the expected life of the infrastructure 
such as transformers and voltage regulators. It is crucial for 
utilities to have accurate information related to Distributed 
Energy Resources (DERs) at the distribution circuit and 
behind-the-meter (BTM). Researchers have demonstrated the 
possibility of detecting rooftop PV [145] and electric vehicles 
charging at the consumer end [146] using non-intrusive 
analytics on smart meter data. Deep neural networks have been 
utilized to detect size, tilth, and azimuth parameters of solar 
PV installations based on AMI data [147].  

4) Grid Applications 
Smart meter data can be utilized in conjunction with 

distribution feeder data to obtain refined models for 
distribution planning, or to obtain insight into specific 
modeling problems. For instance, smart meter data has been 
utilized for anomaly detection [148] such as drastic changes in 
demand or voltage. Smart meter outage data has been utilized 
for analytics and optimal outage restoration [149] and feeder 
reconfiguration design. Smart meter analytics has also been 
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used for transformer connection correction [149], phase 
identification [150], topology identification [151], and 
parameter estimation [152]. 

C. Load Forecasting 
In a utility analytics survey conducted in 2017 among 136 

utilities from 24 countries, 52% of the respondents considered 
energy forecasting as a high-priority application, the highest 
percentage among all applications in the survey [153]. Forecast 
improvement can lead to better operational and planning 
decisions and thus to monetary savings or system reliability 
enhancement. Depending upon the factors such as the size of 
the company and the magnitude of error reduction, forecast 
error reduction may result in annual savings up to millions of 
dollars [154]. In the big data era, the growth of data, 
advancement of computing technologies, and breakthroughs in 
advanced analytics further stimulate the improvement of 
energy forecasting techniques and methodologies. Many of 
these recent developments were recognized as winning entries 
in the Global Energy Forecasting Competitions (GEFCom) 
[42]-[44].  

Utilities have been practicing load forecasting for over a 
century [155]. Following the growth of the electric grid 
footprints and the power industry, long-term load forecasting, 
or spatial load forecasting, in particular, has been considered 
as a crucial component to power systems planning in the late 
20th century to early 2000s [156]-[158], when the load data 
were collected from distribution transformers and in low 

resolution, such as monthly or annual. On the other hand, the 
increasingly sophisticated operational needs started to require 
accurate short-term load forecasts [159]. Artificial intelligence 
techniques, such as artificial neural networks, took the 
majority of the literature in the 1990s [160]. Although many 
models were developed for Short-term Load Flow (STLF), 
most were of little practical value. A notable success developed 
from academia in the 1990s was a neural network model, 
which was later commercialized and is still being used in the 
industry today [161]. Another recent academic research 
discovery that has been commercialized and deployed 
worldwide during the 2010s is a regression-based modeling 
framework [39], [162]. 

As distribution automation and smart grid technologies 
made high spatiotemporal resolution data available to load 
forecasters, the research in load forecasting flourished too. For 
instance, retail electricity providers started to use hourly data 
for long-term load forecasting [163]. Some market operators 
and utilities also relied on hourly or sub-hourly data to forecast 
load at a high voltage level [38], [39], [164]. These high-
resolution load data allow forecasters to build models with 
hundreds of parameters that can capture many salient features 
in the load [37]. They also enabled the load forecasters to 
improve aggregate forecasts by leveraging meter level load 
information [138]. 

While exploiting the use of high-resolution load data, 
researchers and practitioners also invested some efforts on 
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innovative ways of leveraging weather data. Traditionally, 
only a small number of weather stations are being used to 
forecast load in a specific region. In GEFCom2012, 
temperature series from 11 weather stations were released to 
the research community [42]. A weather station selection 
methodology was then proposed and shown to add value to 
state-of-the-art load forecasts. The method was then used by a 
winning team in GEFCom2014 [165]. Recently, it was further 
improved by other researchers [166], [167]. Since weather data 
can be used for many load forecasting models, these weather 
station selection methods are beneficial to both long- and 
short-term load forecasting. 

While the main research trend of load forecasting research 
is to leverage big data, another trend is to embed 
comprehensive information about the future into load 
forecasts. Probabilistic load forecasting, which provides 
forecasts in quantile, probability interval, or density function, 
is certainly a hot topic in the past decade [168]. These 
probabilistic load forecasts can be generated via simulating 
residuals [169], [170], generating input scenarios [171], or 
combining point forecasts [172]. Quantile regression has also 
been adopted to produce probabilistic load forecasts [139] 
[172], [173]. Some methodological aspects of forecasting have 
also been studied specifically for probabilistic load 
forecasting, such as feature selection [174], [175] and forecast 
combination [176]. 

In addition to improving load forecasts at high voltage 
levels, researchers and practitioners have also devoted many 
efforts to load forecasting at medium and low voltage levels. 
Some of them are at a delivery point level [42], [44], while 
others are at individual meters [40], [139], [177]. Another 
popular topic is to forecast building level load, ranging from 
academic buildings [178], [179] to residential buildings [180], 
[181]. While the weather still plays a major role in many 
building level load forecasting models, its effects on industrial 
load are rather minimal. Load forecasting for factories and 
industrial plants is another emerging topic in this category 
[182]-[184], and includes reactive power load forecasting. 

D. Renewable Energy Analytics and Forecasting 
The deployment of renewable energy generation capacities 

has continued at a sustained pace over the past decade or two. 
Owing to the variability of power generation from renewable 
energy sources, and also due to the limited predictability, the 
emphasis has been placed on developing approaches to 
integrate those renewables. Besides aspects related to grid 
code, and some of the analytics and novel energy management 
approaches covered in other sections, a large part of the efforts 
has been on how to optimally use the wealth of data available 
to improve knowledge about renewable power generation, 
most often with a view on forecasting. One of the first papers 
proposing dynamic models for predicting wind speed and 
corresponding power generation is [185]. Even though 
focusing on simple models and a fictitious setup, that 
manuscript laid the groundwork for a wealth of subsequent 
developments. Obviously, at the time, big data aspects were 

not discussed, and the dimensionality of the models involved 
was small. 

Today for wind farms, especially offshore, it is standard to 
collect data at the turbine level at a one-second resolution. 
Similarly, for solar power plants, data can be collected at the 
inverter level, and with a similar second-level resolution. 
Those data at a very fine level are to be leveraged to improve 
analytics and forecasts at the wind farm (or solar power plant) 
level [186]. In addition, since renewable energy generation 
capacities start to be numerous and geographically dispersed 
in a dense manner, one may also accommodate all the data 
collected at the site levels to improve forecasts [14], [18], 
[187]. 

To this should be added a wealth of other data sources of 
relevance, mainly related to meteorological observations and 
forecasts, which describe complex processes and yield very 
large data volumes. On the side of meteorological 
observations: 

    (i) sky imagers have shown great potential for high-
resolution modeling and forecasting of solar power generation 
since they are tracking moving clouds and their impact on solar 
panels [188]. They may give an image of the sky above the 
solar power plants every 30 seconds; 

    (ii) weather radars have similarly demonstrated their 
interest in appraising and modeling dynamic regimes for 
application to high-resolution wind power prediction [189]. 
Depending upon technology, radar images may be available 
between every minute and every 10 minutes, with an image 
radius between 60 and 250 kms; 

    (iii) LIDARs are increasingly seen as highly relevant for 
wind measurements upwind of wind turbines and integration 
in forecasting methodologies [190], or more generally as new 
potential observations of wind profiles to be used in weather 
and renewable energy prediction [191]. LIDARs provide wind 
measurements for the cone they scan (vertically or 
horizontally, depending on the way they are set-up) every few 
seconds. 

One could additionally mention satellite images, of 
potential interest for wind, solar, and wave energy. Their lower 
frequency of update makes them less relevant for the time 
being though. The information from these various types of 
devices is referred to as remotely sensed information. 

A first and complex challenge when handling remotely 
sensed information is dimension reduction. This may be 
performed: (i) based on statistical and signal processing 
techniques, e.g., Independent Component Analysis–ICA, for 
motion fields in weather radar images; (ii) by extracting 
physical features like clouds in sky images [188] or 
precipitation systems and their characteristics in radar images 
[192]; or finally (iii) through functional models like wind 
profiles for LiDAR vertical measurements.  

Besides meteorological observations, new high-
dimensional input data may also take the form of weather 
forecasts. First of all, relevant information in weather forecasts 
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may not only be for the closest point to a site of interest but 
may be provided over the whole area of that site of interest 
[59]. Secondly, to express forecasts in a probabilistic manner, 
ensemble weather forecasts consist of a set of alternative and 
equally likely trajectories (typically, between 10 and 100) for 
relevant weather variables. They can be interpreted as sample 
realizations from multivariate probabilistic forecasts to feed in 
renewable energy forecasting approaches. These are available 
over large areas. e.g., all of Europe, providing information on 
the multivariate space-time dependencies in renewable power 
generation [193], [194]. Finally, very high resolution (spatial 
resolution in the order of tens to hundreds of meters and 
temporal resolution in the order of seconds to minutes) weather 
forecasts are bringing new opportunities for renewable energy 
forecasting, as for the recent example in [186] and applications 
at offshore wind farms. 

Today, the availability of such quantities of data calls for 
fundamental changes in renewable energy analytics and 
forecasting, both in terms of the methods involved but also in 
terms of the business models. We expect to see many 
innovative works appearing in the future proposing approaches 
based on stochastic differential equations, deep learning, 
distributed and federated learning as well as data markets. 

E. Energy Optimization and Efficiency 
Smart grid technologies offer a large potential to boost 

energy efficiency in different sectors. However, presently, 
energy efficiency actions are mainly confined to the 
implementation of ISO 50001 certification as follows: (i) 
install additional equipment (meters, sensors, etc.) to measure 
energy consumption; (ii) install new hardware and replace 
equipment; and (iii) visualize the data in a seamless user 
interface, find anomalous patterns; and identify energy-
intensive processes. This standardized practice provides 
monitoring and awareness of energy consumption to human 
decision-makers, but it does not enable prescriptive analysis 
and autonomous process control.  

Different works in the literature explore model-driven 
energy optimization techniques, such as integer programming 
for peak load reduction in steel-plants [195] and mixed-integer 
linear programming for thermal domestic appliances [196]. 
Model-driven approaches have the disadvantage of requiring a 
(mathematical) model of the physical process and constraints, 
which might be complex to obtain in some cases. They do not 
allow continuous improvement of control policies.  

The advent of internet-of-things technology offers 
technical conditions for data-driven modeling in energy 
optimization. Some examples are the use of batch 
reinforcement learning (fitted Q-iteration) for controlling a 
cluster of domestic electric water heaters for demand response 
services [197]; fitted Q-iteration combined with auto-encoders 
for energy optimization in electric water heaters [198]; deep 
reinforcement learning for predictive energy optimization of 
wastewater pumping stations [199]; and tree-based modeling 
of building energy consumption for optimal heating system 
scheduling [200]. This approach does not require full modeling 
of the process equations since its understanding is made in real-

time through data. However, data availability and the time 
(e.g., number of interactions with the physical system) required 
to “train” data-driven optimization methods remain as practical 
challenges for industry adoption.   

Besides data-driven energy optimization, additional data-
driven energy services can be offered by energy service 
companies (ESCOs), aggregators, and retailers to their 
customers aimed at maximizing end-user awareness to energy 
efficiency actions and extracting business value from data.  

An important contribution to increase end-user awareness 
is non-intrusive load monitoring from smart meter data, which 
can be applied to detect and estimate residential PV 
installations [145], heat pump consumption [201], and 
individual load profiles from feeder load curves [202]. 
Customer segmentation with load profiling can be applied by 
aggregators and retailers to identify target customers, design 
tailor-made dynamic or real-time tariffs [203], model dynamic 
behavior of controllable loads/appliances [204], or inform 
consumers if they are facing an abnormal change of their load 
profile. The standard techniques are batch time series 
clustering, but online clustering is a fundamental requirement 
due to the dynamic nature in the consumption behavior [205].  

Smart meter data combined with exogenous variables (e.g., 
outdoor temperature) can support retailers and aggregators to 
estimate the demand response potential of their customers. In 
[206], a stochastic knapsack problem is formulated for 
customer selection in DR programs using consumption data, as 
well as to estimate the probability of achieving a load reduction 
target. Causality inference between Distributed Resource (DR) 
tariffs and consumption is used in [207] to estimate consumers’ 
elasticity and to identify if dynamic tariffs influence the 
consumers’ usual consumption diagram; a similar goal is 
attained with a correlation-based approach [208]. Moreover, 
online learning can be used to dynamically adjust price signal 
to obtain a desirable usage behavior, e.g., by formulating an 
online convex optimization problem [209] or via a parametric 
utility model [210]. 

The data collected from energy efficiency audits and 
certification is very valuable for different stakeholders and 
services [211]. For instance, the Department of Energy (DOE) 
Buildings Performance Database can be used for different 
goals [212]: energy efficiency score benchmarking of different 
building types and geographical location; estimate energy 
savings potential associated to specific retrofit actions; and 
portfolio-level impact assessment of energy technologies. In 
fact, data-driven techniques can be used for an a priori 
assessment of retrofit measures in terms of energy savings and 
“de-risk” investments in energy technologies. For instance, 
multi-linear regression can produce a probabilistic estimation 
of the return-on-investment associated, with different retrofit 
measures, considering the building’s characteristics and 
systems [213]. 

F. Synchrophasor Data Analytics and Event Analysis 
To appreciate the importance of Phasor Measurement Unit 

(PMU) data, one has to go back to the reports on the causes for 
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the major blackout in the Northeast USA on August 13, 2003 
[214]. The U.S.-Canada Power System Outage Task Force has 
concluded that one of the main reasons for the occurrence of 
the blackout was the lack of situational awareness. This, in 
turn, was attributed to the limited operator view of the power 
system events and associated dynamics enabled at the time by 
the by Energy Management System (EMS) through the field 
measurements provided by the Supervisory Control and Data 
Acquisition (SCADA) systems and substation recording 
devices such as digital fault recorders, digital relays, and 
sequence of events recorders. The key deficiency was the 
measurement reporting rate (SCADA Remote Terminal Units), 
lack of differentiated time stamping (SCADA database), and 
inability to timely update the power system model to reflect 
cascading switching events (state estimator). In addition, the 
fault recording devices were not adequately time-synchronized 
and time-stamped. To remedy such shortcomings, the PMUs 
and synchrophasor-based Wide Area Monitoring, Protection 
and Control (WAMPAC) were identified as an adequate 
measurement infrastructure. With a boost in funding from the 
American Recovery and Reinvestment Act of 2009, many 
PMUs were installed across the USA reaching more than 2,500 
units today. An even larger number of PMUs were installed in 
China, and plans for a large number of installations are 
underway in India.  

One of the main strengths of PMUs is that they provide 
time-synchronized measurements of real-time voltage and 
current phasors at much higher reporting rates compared to 
SCADA Remote Terminal Units (RTU). Insight into how this 
is done can be obtained from Fig. 6 where the PMU generic 
architecture is shown [215]. The key characteristics of PMU 
are the one pulse per second (1PPS) and the time-code 
provided by the Global Positioning Satellite (GPS) clock 
receiver. The accurate clock signal at the rate of 1PPS feeds 
the sample and hold (S/H) circuits at all PMUs, enabling 
synchronous sampling of input waveforms across not only the 
inputs of one PMU but inputs of all PMUs installed in a given 
power system. The time-code representing absolute time adds 
an ability to time-stamp all reference times. Such calculated 
phasor values are reported at a rate per second of 30, 60, 120, 
or even higher, giving two key advantages: a) providing 
streaming measurements of high-fidelity data, and b) assuring 

high accuracy calculation of the phase difference between any 
location in the system and the reference phasor. 

This provides a unique opportunity for post-event analysis, 
especially in the case of complex events (for example, 
cascading faults caused by equipment failures leading to 
blackouts). In addition, capturing and analyzing oscillations in 
a power system is important since it announces a possibility of 
system collapse [216]. The PMUs play an important role in 
disturbance recording [217] with the recent development of 
disturbance identification and classification technologies 
[217]-[220]. In recent years, power system capabilities have 
been extended to include renewable resources, increased 
energy demand, electric vehicle integration, etc. All of these 
technologies impose novel challenges to the system operation. 
PMU data provide a valuable source that could help meet the 
challenges and increase the resilience of the composite grid.  

Thus, the data collected from PMUs plays a vital role in 
applications such as system monitoring, control, protection, 
state estimation, stability assessment, and fault detection [221]. 
However, the post-event analysis is still performed manually 
in many cases with limited or no capability of prediction. The 
proposed techniques embedded in the mentioned software 
solutions are aimed at automated analysis capable of not only 
classifying past events but also predicting future contingencies 
using the records of streaming data.  

The majority of predictive methods for PMU data analysis 
in literature are focused on enabling more meaningful 
situational awareness than what is covered by EMS SCADA, 
in turn assuring dynamic stability of the system [222]-[229]. 
The prediction methods can extend the operators’ capability to 
differentiate types of events, ranging from normal operation to 
operation in extremes by capturing PMU waveform features 
and automatically identifying events during the classification 
process. This enables the applications of big data, AI, and 
machine learning to help in predicting multiple types of alert 
and emergency events in power systems, in addition to 
tracking normal operation and dynamic stability extremes. The 
initial insight can be used as the guide for future research in 
this area and potentially open the door for a more thorough 
exploration of prediction algorithms based on PMU for other 
applications, such as asset management and monitoring, or 
outage management and prediction.  

One challenge that all entities involved with the 
development of online and offline applications are facing is the 
proliferation of an extremely large amount of data coming 
from PMUs. To improve the systems reliability, security, and 
efficiency, automated tools will need to be developed that are 
capable of both analyzing past events and informing decisions 
in real-time. This means that the proposed approaches need to 
differentiate between techniques suitable for accessing and 
processing a large amount of historical data where the 
processing time is less important vs the techniques aimed at 
real-time processing of streaming data where the 
computational efficiency is crucial.    

As computational resources advance, learning and 
extracting useful patterns from big data creates new 

 
Figure 6: Generic architecture of a PMU [215] 
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opportunities. Deep learning [88], [92], [93] allowed for 
finding more abstract patterns from big complex, and even 
heterogeneous data [230]. A deep model learns in a multi-
layered fashion. Each time the new data or an excreted set of 
features is passed through a layer, an additional level of data 
abstraction is introduced. Thus, through many consecutive 
layers, deep models learn richer, high-level representations of 
low-level raw data such as images, sound, and text. In other 
words, deep models provide an end-to-end framework for 
automated, complex, feature extraction at a high level of 
abstraction. The deep models do not extract predefined 
representations—on the contrary, they tend to find invariant 
patterns by removing variation in data [231]. The ultimate 
hypothesis in this regard suggests that the more data there is, 
the more knowledge is being extracted [232], and thus the 
greater the generalization capability that can be achieved. The 
learned representations are compact, which requires less 
computation and, thus, makes further learning quite efficient.  

The overall architecture of the PMU data automated 
analysis process is given in Fig. 7. 

G. Grid Applications 
The investment in Smart Grid technologies (e.g., smart 

meter, PMU, and intelligent electronic devices [IED]) for 
distribution and transmission grids are enhancing their 
monitoring and control capabilities [233]. In parallel, new 
market and regulatory frameworks are being tested (at pilot 
level) and implemented in different countries to support the 
integration of flexible DER. 

1) Observability 
Despite all the technological advances, observability of 

low voltage (LV) grids remains a major bottleneck to fully 
explore the potential from these technologies and integrate 
flexible DER to electricity markets and power system 
management. This can be divided into two main challenges: (i) 
topology and grid’s parameters characterization; and (ii) real-
time monitoring. 

Information from smart meters installed in LV customers 
and in secondary substation feeders can be used to construct 
grid topology using a variety of methods, such as: probabilistic 
graphical model and LASSO linear regression [234], [235]; 
and power flow combined with mutual information [151]. In 
some cases, information about grid topology is available, but 
the electrical parameters exhibit gross errors or are unknown 
(i.e., parameters from cable catalogues are used), and thus, it is 
necessary to conduct a robust (and data-driven) estimation of 
grid parameters [236], [237]. This problem also requires the 
development of methods for planning sensor placement and 
minimization of monitoring costs [238]. Another source of 
uncertainty is the connection phase of each customer. 
Clustering 15-min voltage magnitude measurements from 
smart meters can identify groups of customers connected to the 
same phase and reduce the workforce cost for phase 
identification in the field [239]. Smart meter data can also be 
used to estimate the rated power of behind-the-meter PV 
panels [240] and detect electric vehicles charging [241]. 

In terms of real-time monitoring, information about voltage 
profiles is very important to generate alarms to human 
operators in LV dispatch centers. However, even with 
communication protocols such as Power Line Communication 
(PLC) PRIME or General Packet Radio Service (GRPS) either 
is technically unfeasible to collect every 15-min information 
from hundreds of customers or the communication costs are 
very high. Data-driven state estimation functions help to 
estimate the voltage magnitude in every LV node in real-time 
using only information from a subset of smart meters (i.e., 10-
20%) with real-time communication [242]. Load and 
generation forecasts can be used as input in a standard state 
estimation algorithm and produce a probabilistic estimation of 
the nodal voltage [243].  

Other voltage levels are also benefiting from data-driven 
state estimation functions for real-time monitoring. Some 
examples include the following: a robust data-driven state 
estimation was proposed in [244] to exploit historical data 
collected by substation meters and PMUs, by finding system 
similarities in a supervised learning framework with kernel 
ridge regression; a dynamic state estimator with forecasting 
capability is described in [245]; the combination of SCADA 
data from primary substations (normally available in central 
databases with a few seconds/minutes delay) and secondary 
substation (normally available in central databases with a delay 
of hours) can extrapolate quasi-real-time operating conditions 
of Medium Voltage (MV) grids [246], [247]; and a mosaic of 
local competitive auto-encoders estimates the status of grid 
switchers based on a set of local electrical measurements [248].  

Furthermore, traditional functions, such as outage 
detection, can benefit from data analytics functions that 
integrate textual, temporal, and spatial information from social 
media [21] and PMU data [218]. 

2) Controllability and decision-support 
Data-driven functions are also being integrated in 

traditional energy management (EMS) and distribution 
management systems (DMS) to complement or replace 
classical grid analytical functions such as power flow, network 
reconfiguration, optimal power flow, etc. In some cases, a 
machine learning model is used as a proxy for traditional 
functions, e.g., to estimate power flow of a Jacobian matrix 
with PMU data [249] and unit commitment computations 
[250]. A potential disadvantage of this approach is that a large 
dataset needs to be collected or simulated to fit the models. 
However, after being fitted, it can be integrated into different 
applications and provide fast estimations.    

In other cases, machine learning is used to learn from (or 
imitate) historical data of human operators control actions and 
decision-aid [251] or to explore new (and better) solutions by 
using expert systems [252]. An important advantage of these 
two approaches, developed for Transmission System Owners 
(TSOs), is its high interpretability to human decision-makers 
and the capacity to exploit expert knowledge (i.e., past 
decisions and control heuristics). However, both fall into the 
imitation learning paradigm i.e., supervised learning applied to 
decisions from an expert, and do not explore (or search for) 
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new solutions. An alternative is reinforcement learning, which 
provides a trade-off between exploitation and exploration and 
in some cases, like the case described in [253], can be 
combined with imitation learning.  

Some use cases for this data-driven control approach are: 
fast ranking of higher-order contingencies (according to their 
risk) to better prioritize power systems simulations [254]; and 
causality analysis on measurement data to implement optimal 
node attack strategies [255].  

Finally, the integration of renewable energy systems and 
the wide adoption/implementation of IEC 61850 is increasing 
the volume of alarm data and the number of alarms that require 
attention and control actions in control rooms [256]. 
Traditional approaches are based in rule-based expert systems 
[257], but without the capacity to provide valuable insights 
into the information contained in an alarm sequence and reduce 
the cognitive load of human operators. In [258], an 
unsupervised rough classification technique is proposed to 
reduce the volume of substation data and messages received 
during emergency scenarios and improve decision-making, but 
do not provide suggestions of control actions. This last step of 
decision-making (i.e., define a sequence of manual maneuvers 
by the operator) is missing in most approaches that handle data 
from protection schemes and is fundamental to generate the 
actual impact from data analytics functions, such as reduce 
time to make the first decision and System Average 
Interruption Duration Index (SAIDI).  

V. FUTURE OPPORTUNITIES AND CHALLENGES 
The survey indicates many applications that are at different 

stages of practical implementation. While the number of 
references on the general subject of big data is already large, it 
is expected that the work will be progressing at an 
unprecedented pace, and the number of references will grow 
even more in the near future. However, it is not clear in some 
of the published surveys, what the end applications of some of 
the surveyed techniques are, and what are the associated 
benefits and business drivers. We see the benefit of future 
research in its focus on end-applications while answering the 
fundamental issues at the same time to advance the following 
opportunities eventually; 

• Predicting events ahead of time and allowing 
mitigation strategies to be implemented and risk 
quantification with uncertainty forecasts to be 
calculated 

• Monetizing historical data for the benefits of owners 
and users 

• Combining physical and data models for improved 
root-cause analysis 

• Preventing power system outages and operational 
constraints currently costing billions of dollars 

• Making the users aware of upcoming electricity 
supply constraints and utilizing distributed resources 
more effectively to mitigate outages and other 
contingencies 

• Spurring innovation by utilizing cross-discipline 
experiences from seemingly different domains but 

with a strong correlation of data properties and 
analytics requirements 

• Utilizing data from many disparate ubiquitous 
sources such as tablets, smartphones, and other 
personal electronic devices making the owners and 
stakeholders of the data analytics enterprise the 
participating actors   

• Replacing some of the tasks performed by operating 
agents and experts today by algorithms and 
automated processes 

At the same time, many challenges need to be overcome: 

• Lack of real-world data to make future studies more 
practically focused 

• Lack of open data and benchmark models for 
different use cases 

• The use of synthetic data may have to be carefully 
evaluated for yielding any meaningful outcomes 

• Agreeable metrics for evaluating big data analytics’ 
results for their validity and impact (e.g., return-on-
investment of big data technologies) 

• Offer model’s interpretability and sufficient accuracy 
to decision-makers 

• Availability of open-source platforms for data 
management and data analytics implementation 

• Limited viewing capabilities for large amounts of 
data points in scalable data models 

• Consideration of computational requirements to find 
an optimal trade-off between centralized and 
decentralized computing 

• Cybersecurity and privacy of the data management in 
data analytics enterprises. 

VI. CONCLUSIONS 
This survey has strived to achieve several goals: 

• It addressed both the breadth and depth of practical 
big data analytics application in the electricity grid. 

• It made a review of the key issues in implementing 
big data analytics in the selected grid domains. 

• It gave ample examples of recent trends in the 
decision-making framework and predictive analytics. 

• It enumerated a number of references that may be 
used by researchers to further their own research. 

• It gave some direction of future research and outlined 
challenges and opportunities. 

The paper is by no means an exhaustive account of all 
the published works or trends. If interested in the subject 
matter, the readers of this survey should explore additional 
aspects not mentioned here. 
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