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Abstract—Nowadays, the uncertainty in distribution systems
rises, notably due to an increasing share of solar panels and
electric vehicles whose power production and consumption are
characterized by a high volatility. This poses challenges to dis-
tribution system operators to ensure stable and secure operation
of their grid. Hence, an optimal integration of these distributed
energy resources in real-time control schemes inevitably relies on
appropriate forecasts of the near-future system state. This paper
investigates the short-term probabilistic state prediction of low-
voltage grids for operation purposes. The performance of two
quantile forecasting algorithms is evaluated for different levels
of distributed energy resources penetration and availability of
measurements. Quantile forecasts are finally integrated into the
framework of an optimization problem that aims at minimizing
the costs associated with overvoltages by suitable solar power
curtailment. The advantages of quantile forecasts considering
different imbalance prices are demonstrated.

Index Terms—distributed energy resources, low-voltage dis-
tribution grid, optimal power flow, quantile forecasting, voltage
control

I. INTRODUCTION

The share of Distributed Energy Resources (DERs) in
today’s distribution grids is increasing. These DERs, mainly in
the form of Photovoltaic (PV) systems and Electric Vehicles
(EVs), introduce new operational challenges to Distribution
System Operators (DSOs). On the one hand, PV systems
synchronously inject active power into the grid according to
the volatile solar irradiance and can considerably increase
the voltage in the system. On the other hand, EVs represent
stochastic loads which consume substantial amounts of active
power and decrease the voltage during the charging phase.
Since DSOs are responsible for the safe operation of their
networks by avoiding voltage band violations or line over-
loadings, it becomes crucial to properly observe and foresee
voltages and power flows down to the low-voltage level.

Nowadays, the wide roll-out of Smart Meters (SMs) allows
DSOs to gain insights into their system, notably by using Dis-
tribution System State Estimation (DSSE) techniques. Widely
discussed in the current literature [1], Weighted Least Square
(WLS) based algorithms perform particularly well on the
transmission grid level but cannot properly exploit highly
volatile measurements in distribution grids [2]. Alternatively,
Machine Learning (ML) algorithms can be used to estimate
the most likely state of a system. The authors in [3] pro-
pose a closed-loop approach where a WLS algorithm is fed
by the load forecasts of a Non-linear Auto-Regressive Ex-

ogenous (NARX) model. K-Nearest Neighbor (KNN) based
approaches are presented in [2], [4], where the actual state is
estimated by using historical system states whose correspond-
ing measurements are similar to the real-time measurements.
Nevertheless, state-of-the-art DSSE approaches are determin-
istic and cannot give insight into the state estimation errors
which can largely vary between time steps.

While the errors do not follow a given distribution, the
quantification of the near-future state uncertainty is essential
in distribution grids populated with highly volatile loads and
DERs. Probabilistic forecasting algorithms enable a compre-
hensive prediction by covering the entire uncertainty range
without assumption on the error distribution and by updating
their prediction in real time [5]. For example, the authors
in [6], [7] elaborate on regression Neural Networks (NNs) and
Long Short-Term Memory (LSTM) algorithms for quantile
load forecasting with promising results. However, the literature
mainly focuses on load forecasting and disregards the direct
prediction of other quantities such as voltage and line loading
which are relevant for DSOs. In this paper, a quantile NN
and a novel probabilistic version of the KNN algorithm are
designed to predict net power consumptions, line power flows,
and bus voltage magnitudes. Their performance is evaluated
on a real low-voltage distribution system of the City of Basel
in Switzerland, considering multiple levels of PV and EV
penetration. In addition, we study the added value of real-
time instead of time-delayed SM measurements, and of an
additional feature that indicates at which points in time the
EVs are charging.

Moreover, in the literature on power systems optimization,
a focus has been recently given to control schemes that
explicitly consider uncertainty to cope with the volatile and
hardly predictable nature of DERs [8]. This is notably the
case for chance-constrained Optimal Power Flow (OPF) [9].
However, they usually assume a given error distribution and
overlook the large temporal variations in uncertainty, which
does not reflect the very volatile reality. Therefore, this paper
promotes the use of short-term quantile forecasts by directly
integrating them into a two-stage OPF control scheme. It
aims at optimally estimating in advance the required PV
power curtailment to keep the voltages within limits and avoid
expensive curtailment in real time.

The remainder of this paper is structured as follows. Sec-
tion II presents the quantile forecasting algorithms and Sec. III
details multiple OPF schemes for voltage control. The grid

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020



Fig. 1. Weeks of the data set split into training, validation and test set

model used in the case study and the associated measurements
are described in Sec. IV whereas the performance of the
forecasting algorithms and of the control schemes is discussed
in Sec. V. Section VI summarizes the main outcomes and
outlines future work.

II. PROBABILISTIC STATE FORECASTING

While still widely used in the literature on control of
active distribution grids, perfect forecasts are unrealistic while
deterministic forecasts cannot account for the underlying un-
certainty [10]. Moreover, the assumption of a given error dis-
tribution gives a biased image of the reality [8]. In this paper,
we promote very short-term quantile forecasting algorithms
which are probabilistic methods that quantify the prediction
uncertainty for each time step.

A. Setup of quantile forecasting

In this paper, active and reactive power consumption Pcons

and Qcons, active and reactive power flow Pflow and Qflow,
respectively, and bus voltage magnitude V are predicted one
hour ahead by a quantile NN and a novel probabilistic version
of KNN. The different quantities and quantiles are correlated
and could be predicted simultaneously. However, a preliminary
study suggests that the use of one single ML model per grid
component, per quantity and per quantile is more efficient
in terms of computation time and accuracy, as long as the
most influencing quantities belong to the feature set. For each
algorithm, the corresponding hyperparameters are selected by
grid search. For each ML model, the data set over one full
year is split into training, validation and test sets according
to Fig. 1. This partitioning accounts for the seasonal behavior
of measurements while yielding continuous test sets used in
the control schemes described in Sec. III. The training process
consists of minimizing the pinball loss function, which creates
separate forecasts for different quantiles:

Jq =
1

N

N∑
n=1

{
(yn − ŷq,n) q if yn ≥ ŷq,n,
(ŷq,n − yn) (1− q) if yn < ŷq,n,

(1)

where q is the target quantile, yn is the target value of sample
n, ŷq,n is the prediction for quantile q of sample n, and N is
the number of samples in the training set. The loss function is
asymmetric such that for any quantile higher (or lower) than
the 50%-quantile, forecasting errors due to underestimation of
the target value get penalized more (or less) than the errors
due to overestimation. Note that the 50%-quantile corresponds
to the usual point forecast.

TABLE I
BASIC FEATURE SET FOR THE PREDICTION OF BUS QUANTITIES

Category Features Time Delay
Online V , Pcons and Qcons -
Recent V , Pcons and Qcons 1 hour and 2 hours

Historical V , Pcons and Qcons 1 day and 2 days
Weather temperature and solar irradiance -
Calendar hour, weekday and holiday flag -

TABLE II
BASIC FEATURE SET FOR THE PREDICTION OF LINE QUANTITIES

Category Features Time Delay
Online V1, V2, Pflow and Qflow -
Recent V1, V2, Pflow and Qflow 1 hour and 2 hours

Historical V1, V2, Pflow and Qflow 1 day and 2 days
Weather temperature and solar irradiance -
Calendar hour, weekday and holiday flag -

B. Feature Set

Tables I and II summarize the basic sets of input features
for bus quantities (i.e., active and reactive power consumption,
voltage magnitude) and line quantities (i.e., active and reactive
power flow), respectively. Note that the forecast of a certain
quantity also uses the measurements of other quantities to
profit from their physical coupling in the grid (e.g., voltages
at connected buses are features for the prediction of power
line flows). All measurements are standardized and calendar
features are one-hot encoded.

In the case study, we investigate the added value of real-time
SM data compared to only time-delayed SM data. In the latter
case, only day-ahead SM measurements up to midnight are
assumed to be accessible. Hence, online and recent features are
not available, but the historical feature set is further enhanced
by quarter hourly values around the corresponding values one
and two days in the past. This ensures a sufficient number
of grid measurements in the feature set. Moreover, we assess
the impact of knowing the starting time and duration of EV
charging events. In practice, this could be inferred from the
GPS location and the state of charge of the vehicle1. In this
case, a binary EV charging feature is added to the buses where
an EV is assigned to and to all lines connected to those buses.

C. Quantile Neural Network

NN models are well-known ML algorithms inspired by the
structure of the human brain that can approximate any non-
linear function via a weighted linear combination of neurons
organized in layers. In this study, depending on the forecasted
quantity, the NN contains 4 or 6 hidden layers and the neurons
are associated with the ELU or RELU activation function.
During the training process, the weights of the neural network
are adjusted in order to minimize the pinball loss function
defined in (1). In addition, L2-regularization is considered and
up to 10% of the neurons can be dropped to prevent overfitting.
Note that Lasso regression and Principal Component Analysis
have been tested to reduce the feature set dimension but none
of the methods is conclusive in terms of forecast accuracy.

1This of course raises privacy concerns but is out of scope of this paper.
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D. Quantile K-Nearest Neighbor

In contrast to using linear combinations of the input features
to find a prediction for the target values, the KNN algorithm
assumes that if a similar grid state defined by the input features
has been observed at a certain point in the past, the future
target value of a grid quantity in one hour from now is similar
to the value one hour after the state found in the past. For the
purpose of this paper, the similarity measure is based on the
weighted Minkowski distance:

dt,m = |(wmink)T (xm − xt)|p, ∀m ∈Mt, (2)

where xm and xt are the feature vectors of past sample m
and of current sample t, respectively, wmink is a vector of
weights, Mt is the set of past samples at current time t,
and p ∈ {1, 2} is a hyperparameter defining the norm. The
Minkowski weights are set according to the importance of
the corresponding features, which is given by Lasso cross-
validation in this study. After calculating all Minkowski dis-
tances dt,m between the past system states xm , ∀m ∈ Mt ,
and the current system state xt, the corresponding target values
yknn
i , ∀i ∈ {1, . . . , k} , of the k states showing the smallest

distances are linearly combined to predict the future target yt.
In order to obtain a suitable number of neighbors k and the
optimal KNN weights wknn, ten small optimization problems
for k ∈ {5, 10, . . . , 50} are solved:

Jknn = min
wknn

1

N

N∑
n=1

|(wknn)Tyknn
n − yn|, (3a)

subject to wknn
i ≥ 0, ∀i ∈ {0, . . . , k}, (3b)

where yn is the target value of sample n, yknn
n is a vector

of targets of the k nearest neighbors of yn (including a bias
term of 1), wknn is a vector of neighbor weights, and N is the
number of samples in the training set. The cost function (3a) is
based on the Mean Absolute Error (MAE) function and allows
to perform point forecasts. Constraint (3b) guarantees that all
neighbors and the bias term have to contribute positively to the
result of the linear combination. The training of this algorithm
is a proposed extension of the standard KNN algorithm
such that quantile forecasts can be obtained by replacing the
MAE function by the pinball loss function. More precisely,
|(wknn)Tyknn

n − yn| is replaced by ((wknn)Tyknn
n − yn) q

if yn ≥ (wknn)Tyknn
n and by ((wknn)Tyknn

n − yn) (1 − q)
if yn < (wknn)Tyknn

n . Finally, a Lasso regression on the
basic feature set reduces of a few percents the prediction error
regarding the voltage magnitude and active power quantities.

III. OPTIMAL VOLTAGE CONTROL

Overvoltages around noon due to large and simultaneous
PV injections are expected to be a major contingency in low-
voltage grids with high shares of DERs, as shown for the case
study in Sec. V-B. Reactive power control is a cost-effective
means to regulate the voltage, but in the considered system,
reactive power is highly volatile and its forecast is associated
with a large uncertainty. In order to show the added value of
quantile forecasts, we opt for active power curtailment of the

PV injection as measure to keep the voltages below an upper
limit, set to 1.05 pu in this study. This simultaneously reduces
potential line overloadings. In that respect, this section presents
an approach that aims at optimizing the physical DSO position
on the intraday market. If an overvoltage can be estimated
one hour ahead, the optimal PV curtailments with respect to
the estimated state can be computed and we assume that the
DSO only compensates the owners of the curtailed PV systems
based on the corresponding market price. If an overvoltage
is not (fully) eliminated in advance, the DSO has to further
curtail PV energy in real time, which is penalized by a higher
imbalance price [11]. This results in a trade-off between the
risk of curtailing too much energy in advance and facing a
higher price for potential adjustments in real time. In this
paper, a pure real-time optimization strategy is compared with
control strategies based on point and quantile forecasts.

A. Benchmark Real-Time Optimization Strategy (SB)

In the benchmark strategy SB , PV curtailment is applied in
real time for each time step subject to an overvoltage, i.e.:

max
k∈ΨB

Vk > 1.05, (4)

where Vk is the voltage magnitude at bus k, and ΨB is the
set of all buses. PV curtailment is associated with a high
imbalance price and the optimization problem is defined as:

min
P curt

nPV

∑
ΨPV

1

4
CibP

curt
nPV

, (5a)

subject to

0 ≤ P curt
nPV
≤ P prod

nPV
, ∀nPV ∈ ΨPV, (5b)

Pk +
∑

ΨPV,k

P curt
nPV

+
∑

m∈Ωk

Pkm = 0, ∀k ∈ ΨB, (5c)

Pkm = (Vk)2gkm (5d)
− VkVm(gkm cos θkm + bkm sin θkm), ∀k,m ∈ ΨB ,

Qk +
∑

m∈Ωk

Qkm = 0, ∀k ∈ ΨB, (5e)

Qkm = −(Vk)2bkm (5f)
+ VkVm(bkm cos θkm − gkm sin θkm), ∀k,m ∈ ΨB ,

0.95 ≤ Vk ≤ 1.05, ∀k ∈ ΨB, (5g)
V1 = V meas

1 , (5h)
θ1 = 0, (5i)

where P curt
nPV

and P prod
nPV

are the curtailed power and production
potential of PV system nPV, respectively. Pk and Qk are the
net active and reactive power consumptions before curtailment
at bus k, respectively. Pkm and Qkm are the active and reactive
power flows from bus k to bus m, and V meas

1 is the voltage
magnitude measured at the slack bus. Parameters gkm and bkm
are the line conductance and susceptance from bus k to bus
m, θkm is the voltage angle difference between bus k and bus
m, and θk is the voltage angle at bus k. ΨPV is the set of
all PV systems in the network, ΨPV,k is the set of all PV
systems connected to bus k, Ωk is the set of all power lines
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connected to bus k, and Cib is the imbalance price of curtailed
PV energy. The cost function (5a) defines the total curtailment
cost per time step of 15 minutes. Constraint (5b) limits the PV
power curtailment. The active and reactive node balances as
well as the AC power flow equations are defined in (5c)–(5f).
Constraint (5g) ensures the voltage boundaries, and constraints
(5h) and (5i) set the voltage magnitude and angle references
at the slack bus.

B. Optimization Strategy using Point Forecasts (S50)

Assuming that point forecasts (i.e., 50%-quantile forecasts)
are available, strategy S50 is used for each time step where an
overvoltage is forecasted hour-ahead:

max
k∈ΨB

V̂50,k > 1.05, (6)

where V̂50,k is the point forecast of the voltage magnitude
at bus k. Point forecasts of the loads are integrated into the
following optimization problem solved at an hour-ahead stage:

min
P curtHA

nPV

∑
ΨPV

1

4
CmP

curtHA
nPV

, (7a)

subject to

0 ≤ P curtHA
nPV

≤ P̂ prod
nPV

, ∀nPV ∈ ΨPV, (7b)

P̂50,k +
∑

ΨPV,k

P curtHA
nPV

+
∑

m∈Ωk

Pkm = 0,∀k ∈ ΨB, (7c)

Pkm = (Vk)2gkm (7d)
− VkVm(gkm cos θkm + bkm sin θkm) ∀k,m ∈ ΨB,

Q̂50,k +
∑

m∈Ωk

Qkm = 0, ∀k ∈ ΨB, (7e)

Qkm = −(Vk)2bkm (7f)
+ VkVm(bkm cos θkm − gkm sin θkm) ∀k,m ∈ ΨB,

0.95 ≤ Vk ≤ 1.05, ∀k ∈ ΨB, (7g)

V1 = V̂50,1, (7h)
θ1 = 0, (7i)

where P̂ prod
nPV

is the point forecast of the potential power
production of PV system nPV, and P curtHA

nPV
is the hour-ahead

curtailed power of PV system nPV. P̂50,k and Q̂50,k are point
forecasts of the active and reactive power consumption at bus
k, respectively, and Cm is the market price of curtailed PV
energy. Note that separate point forecasts based on a simple
NN are performed for each PV system output. This opti-
mization problem is similar to problem (5) of the benchmark
strategy SB except that hour-ahead point forecasts replace the
realizations and that the associated marginal cost is the market
price instead of the imbalance price.

In a second stage, the PV power injection is further adjusted
in real time to remove remaining overvoltages. Basically, a
similar optimization problem as in strategy SB is solved
whenever condition (4) is satisfied. Nevertheless, the decisions

made at the hour-ahead stage must be included by replacing
Eqs. (5b) and (5c) with the following constraints:

0 ≤ P curt
nPV
≤ P prod

nPV
− P curtHA

nPV
, ∀nPV ∈ ΨPV, (8a)

Pk +
∑

ΨPV,k

P curtHA
nPV

+
∑

ΨPV,k

P curt
nPV

(8b)

+
∑

m∈Ωk

Pkm = 0,∀k ∈ ΨB.

C. Optimization Strategy using Quantile Forecasts (Sq)

Strategy Sq uses quantile forecasts of the voltage magni-
tudes to minimize the cost of overvoltages at the hour-ahead
stage. For this purpose, we define the uncertainty of the voltage
as the difference between the quantile and point forecasts:

dV̂q,k = V̂q,k − V̂50,k, ∀q ∈ ]0, 100[, ∀k ∈ ΨB, (9)

where dV̂q,k and V̂q,k are the voltage uncertainty and forecast
for quantile q at bus k, respectively. The curtailment strategy
is applied at each time step for which the following condition
holds:

max
k∈ΨB

V̂q,k > 1.05. (10)

The hour-ahead optimization problem of strategy Sq only
differs from problem (7) of S50 in the formulation of the
voltage limit (7g) and the slack bus voltage reference (7h)
which must be replaced by the following constraints:

0.95 ≤ Vk + dV̂q,k ≤ 1.05, ∀k ∈ ΨB, (11a)

V1 = V̂50,1 − dV̂q,1. (11b)

Note that the voltage forecasts are only included in the
form of uncertainty of the quantile whereas the resulting
voltages are determined by the optimization. In addition,
only point forecasts of the power consumption are used in
order not to mix the uncertainties from different forecasting
sources. Finally, remaining overvoltages detected in real time
are handled by the same second-stage optimization as for S50.

IV. DISTRIBUTION GRID MODEL

This section presents the distribution network and the asso-
ciated load, together with the PV and EV active power data,
which serves as the model for the evaluation of the forecasting
algorithms and control strategies presented in Sec. V. Since
this study focuses on data forecasting, special care is taken to
create a realistic model based on real data.

A. Grid Topology and Measurements

The system considered for the case study is a weakly
meshed 400V low-voltage network fed by a distribution trans-
former in a residential area of the City of Basel and operated
by IWB [12]. It consists of 198 power lines and 196 buses,
of which 88 buses are connected to residential loads. About
half of the loads are actually measured by smart meters with
15-minute resolution. The yearly energy consumption being
known for the other loads, they are assigned power profiles
of smart metered consumers with similar consumption located
in other residential areas of Basel. Together with the voltage
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measurement at the transformer, an observable grid can be
achieved. We assume the grid topology to be perfectly known,
the loads and PV systems to be voltage independent and the
transformer voltage to be maintained after the optimization.

B. Photovoltaic Power Production

In order to simulate a situation where up to 60% of the
houses are covered with photovoltaic panels, the power output
profiles of 116 PV systems measured by IWB and spread in the
entire City of Basel are first selected and normalized by their
maximal power value. Second, they are suitably allocated and
scaled to the houses based on a tool developed by UVEK [13]
and Energie Schweiz [14] which assesses the solar potential
of any Swiss rooftop. The solar irradiance measurements are
taken from a MeteoSwiss weather station in Basel [15].

C. Electric Vehicle Power Consumption

The consumption profiles of charging EVs are derived from
the open data set of the “My Electric Avenue” project, where
the driving and charging patterns of more than 200 Nissan
Leaf vehicles have been recorded in the United Kingdom over
18 months [16]. After applying data cleaning and filtering,
180 charging profiles at 3.7 kW nominal power are extracted,
which corresponds to 30% of the households in the considered
grid. Since future home chargers are expected to work between
7.4 kW and 11.1 kW [17], the charging power is scaled up
while the charging time is accordingly reduced in order to keep
the same energy consumption. EVs associated with a 7.4 kW
charger are modeled with the same energy consumption as
Nissan Leaf vehicles whereas EVs with a 11.1 kW charger are
assumed to have a power consumption close to the Audi e-tron
or Tesla models and their energy consumption is multiplied
by 1.8 [18]. Finally, charging profiles are allocated to the
grid buses according to the algorithm presented in [19] which
creates EV clusters. This reflects the social effect of increased
willingness to purchase an EV when neighbors also drive EVs.

D. Data aggregation

All aforementioned measurement data are adjusted to a 15-
minute resolution over one year. In order to represent different
DER penetration levels, multiple data sets are created by
adding an increasing number of the EV power consumption
and PV production profiles to the initial load profiles. This
is summarized in Table III which also indicates the share of
houses whose rooftop are equipped with PV panels and the
share of households in possession of an EV. In addition, the
share of 11.1 kW chargers increases with the DER penetration
to simulate a probable decrease of the price gap between
7.4 kW and 11.1 kW chargers. Finally, all bus voltages and
power line flows are determined by power flow simulations to
complete the system state of the four penetration scenarios.

V. RESULTS AND DISCUSSION

In this section, we first present the evaluation metrics for
the quantile forecasts before commenting on the forecasting
results. Finally, the optimization strategies are discussed, for

TABLE III
OVERVIEW OF THE DIFFERENT DER MODIFIED DATA SETS

Number of PVs
(share of houses)

Number of EVs
(share of households)

Share of
11.1 kW chargers

DSB 0 0 -
DS1 39 (20%) 60 (10%) 50%
DS2 77 (40%) 120 (20%) 62.5%
DS3 116 (60%) 180 (30%) 75%

which we use the best forecasting algorithms and feature sets
on data set DS3 that leads to the highest overvoltages.

A. Probabilistic Evaluation Metrics

The Skill Score (SS) is used as the main metric to evaluate
the performance of the probabilistic forecasts. It reflects the
ability of a quantile forecast to create narrow quantile bands,
evaluated by the Normalized Sharpness (NSHRP), while main-
taining the reliability of those bands, evaluated by the Average
Coverage Error (ACE). The Reliability (REL) represents the
percentage of targets that can be captured within the predefined
quantile band. These four metrics are defined as follows:

REL(BQ) =
1

T

T∑
t=1

1
ŷ
(t)

50−Q/2
≤yt≤ŷ(t)

50+Q/2

, (12)

ACE(BQ) = Q− 100 ·REL(BQ), (13)

NSHRP(BQ) =
100

T · ¯|y|

T∑
t=1

(
ŷ

(t)
50+Q/2 − ŷ

(t)
50−Q/2

)
, (14)

SS(BQ) = ACE(BQ) · NSHRP(BQ), (15)

where yt is the target value at time step t, and ŷ
(t)
50−Q/2 and

ŷ
(t)
50+Q/2 are the quantile forecasts defining the lower and upper

bounds of the quantile band BQ at time t, respectively. ¯|y| is
the mean absolute of the target values, 1x is the indicator
function under condition x, Q is the nominal coverage rate of
BQ, and T is the number of time steps in the test set. A good
quantile forecast implies a low sharpness and an ACE close
to zero, hence a skill score close to zero.

B. Probabilistic State Forecasting

Figure 2 shows the resulting quantile forecasts of a NN for
the active power consumption over three days at a specific bus
with PV panels and EVs in the DER penetration scenario DS3.
One can notably see the large PV injection during the first
day and the EV consumption in the first two evenings. Most
uncertainty appears to come from car charging events such that
the additional car charging feature allows for a drastic drop of
the forecast uncertainty. The availability of online SM mea-
surements helps to forecast the volatile base household loads
and to reduce the uncertainty associated with the PV injection.
It also enables the detection of EV charging events with a one-
hour time delay if the car charging feature is not provided.
The quantile forecasts based on both ML algorithms for the
active power flow over a specific line are shown in Fig. 3.
Whereas the load of EVs, charging at different time periods,
is moderate, the simultaneous power injection of multiple PV
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Fig. 2. Active power consumption forecasts at a specific bus with PV panels and EVs for DS3. Subfig. A1: Neural Network (NN) with online SM
measurements. Subfig. A2: NN with only day-ahead SM measurements. Subfig. B1: NN with online SM measurements and additional car charging feature.
Subfig. B2: NN with only day-ahead SM measurements and additional car charging feature.
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Fig. 3. Active power flow forecasts at a specific line for DS3. Subfig. A1: NN with online SM measurements. Subfig. A2: NN with only day-ahead SM
measurements. Subfig. B1: KNN with online SM measurements. Subfig. B2: KNN with only day-ahead SM measurements.
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Fig. 4. Voltage magnitude forecasts at a specific bus with PV panels and EVs for DS3. Subfig. A1: NN with online SM measurements. Subfig. A2: NN
with only day-ahead SM measurements. Subfig. B1: KNN with online SM measurements. Subfig. B2: KNN with only day-ahead SM measurements.

systems is clearly visible. The NN algorithm can reasonably
forecast the power flow and properly detect the periods with
higher uncertainty, even without online SM measurements.
However, the KNN algorithm produces very narrow quantile
bands which fail to encompass the target values, except during
high PV injection time. This phenomenon is observed for
each forecast where the difference between the minimum and
maximum target values is relatively large. The reason lies in
the nature of KNN where the quantile predictions are linear
combinations of previous target values. Hence, the bounds of
the quantile bands are the results of problem (3) where the
optimal weights are applied for all time steps such that the
bands get narrower when the target values get closer to zero.

Concerning voltage magnitude forecasts, Fig. 4 compares
the outcome of the NN and KNN algorithms with and without
online SM measurements. All variants are quite accurate. In
this scenario with the highest DER penetration, the shape
of the voltage curve is barely impacted by the EV load. In
contrast, during sunny days, voltage values largely exceed the
overvoltage limit whereas on cloudy days, the detection of
an overvoltage depends on the considered quantile. In this
case, the accuracy of the quantile forecasts is determinant
when used in the control strategies. While still being reliable,
KNN tends to produce narrower quantile bands than the NN.
Reactive power consumptions and reactive power flows are not
explicitly shown since they are extremely volatile and hence
hardly predictable in any case.

Figures 5 and 6 compare the performance of the NN and
KNN algorithms in the form of box and whisker plots, where
each data point represents the skill score for a single line power
flow and bus voltage, respectively. The central bar indicates the
median value, the small red square is the mean value, the box
corresponds to the Interquartile Range (IQR) and the ends of
the whiskers define 1.5× IQR below and above the lower and
upper quartiles, respectively. Figure 5 indicates that the NN
outperforms KNN to forecast active power flows in all consid-
ered cases. This is explained by the specifically poor reliability
of KNN which generally creates too narrow quantile bands that
miss the target values, as illustrated in Fig. 3. In addition, the
ACE of KNN algorithm is proportionally increasing with the
uncertainty (i.e., growing DER penetration). The car charging
feature and the availability of online SM measurements are
beneficial to a lesser extend. Similar outcomes can be observed
for active power consumption forecasts. In contrast, Fig. 6
shows the better skill score for KNN compared to the NN, due
to a better reliability and lower sharpness. Indeed, the narrower
bands produced by KNN still properly envelop the target
values in the forecast of voltage magnitudes since all values lie
in the same range (i.e., around 1 pu). Being based on the linear
combination of similar grid states, KNN is therefore well
suited to predict voltages. In terms of further features, only
online SM measurements are beneficial for voltage forecasts.
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Fig. 5. Skill score for B80 of the active power flow for all lines and time
steps in the test set. Each subfigure refers to a different feature set related to
the availability of online SM measurements and of the car charging feature.
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Fig. 6. Skill score for B80 of the voltage magnitude for all buses and time
steps in the test set. Each subfigure refers to a different feature set related to
the availability of online SM measurements and of the car charging feature.

C. Optimal Voltage Control

Having shown the best performance in terms of voltage
forecasts, the KNN algorithm with online SM measurements
is used. However, no car charging feature applies here. For
the power consumptions, the NN algorithm with online SM
measurements and car charging feature is considered. Power
line flows are not directly used since they are implicitly given
by the OPF problems. In addition, on average an ACE ≈ −6%
is observed for the 50%-quantile voltage forecasts at time steps
where an overvoltage is predicted, which indicates that the
point forecasts tend to overestimate more than underestimate
the voltage at these time steps. This gives the incentive to
relax the voltage limit to the 44%-quantile in strategy Sq .
Alternatively, due to a cheaper market price than imbalance
price, the DSO might want to remove as much overvoltage
as possible at the first stage and even accept superfluous PV

TABLE IV
OPTIMIZATION RESULTS FOR DIFFERENT STRATEGIES IN CURRENT AND

POTENTIALLY FUTURE PRICE SITUATIONS

SB S50 S44 S62.5

HA power curtailment [MWh] 0.0 22.3 21.6 23.7
RT power curtailment [MWh] 22.3 2.1 2.4 1.5

Total power curtailment [MWh] 22.3 24.4 24 25.2
Total cost in current situation [AC] 1422 1022 1017 1044
Total cost in future situation [AC] 2843 1154 1172 1142

curtailment. This would justify the use of a higher quantile in
strategy Sq (e.g., 62.5%-quantile in this case study). Moreover,
since the results are evaluated on a Swiss grid, the market price
Cm for electrical energy is set to 40 AC/MWh which roughly
corresponds to the average Swiss spot market price [20].
Subsequently, the Swiss imbalance price is defined as [11]:

Cib = 1.1 · (1.2 · Cm + pib), (16)

where Cm and Cib are the market and imbalance prices for
the curtailed PV energy in AC/MWh, respectively, and pib

is an imbalance penalty equal to 10 AC/MWh. Considering
the increasing share of volatile DERs in future distribution
networks, the imbalances are expected to increase, which could
lead to an increase of the imbalance price with respect to the
market price. Hence, we also consider a future situation where
the imbalance price would be doubled.

Table IV compares the benchmark and forecast based
strategies for both price situations. The total cost consists
of the cost of the Hour-Ahead (HA) and of the Real-Time
(RT) curtailments for a period of 10 weeks evenly distributed
over a year, as shown in Fig. 1. Although the forecast based
strategies curtail in total more PV power than the pure real-
time optimization because of the prediction errors, they lead
to a clear reduction of the total cost (i.e., about 27%). In the
current price situation, S44 is the most cost-efficient strategy.
Since the imbalance price is only about 50% higher than the
market price and the point forecast tends to overestimate the
voltage in overvoltage situations, it is preferable to enable
some more remaining overvoltages that are handled in real
time. Conversely, if the imbalance price increases, it gets pro-
fitable to accept more and even too much curtailment one hour
ahead, as shown by the lowest total cost for strategy S62.5.
Note that the actual value of the market and imbalance prices
influences only the total cost, not the optimal curtailment.

Finally, based on strategy S44 at a selected time step, Fig. 7
gives insight into the intermediate voltage predictions in the
50%-quantile before and after the hour-ahead optimization and
into the final voltage realizations for all buses in the net-
work. Since this strategy reduces the overvoltages only to the
44%-quantile, the upper subplot still shows some remaining
overvoltages predicted for the 50%-quantile at a few buses.
Nevertheless, at this time step, the lower subplot indicates that
all the voltages are actually well below the limit already after
the hour-ahead stage. This means that no real-time adjustment
is required. Due to the tendency of the point forecast to
overestimate overvoltages, strategy S44 profits of exactly such
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Fig. 7. Intermediate voltage point forecasts and final voltage realizations
resulting from strategy S44 at a selected time step

scenarios where the overvoltage can be completely eliminated
at the hour-ahead stage by curtailing less energy than the point
forecast would have predicted.

VI. CONCLUSION

To sum up, this paper is meant to encourage the use
of quantile forecasts in OPF schemes. Hence, we present
a comprehensive approach for hour-ahead probabilistic state
estimation whose quantile predictions are subsequently used
in a control scheme that optimally reduces the costs associated
with overvoltages. For that purpose, we design a quantile NN
that can accurately forecast power quantities and properly
quantify the corresponding uncertainty, and we propose a
novel quantile KNN algorithm that outperforms the NN for
the prediction of voltage magnitudes. The hour-ahead forecast
evaluation is performed on a real LV grid with various DER
penetrations. It highlights the particularly large uncertainty on
bus power consumptions and line power flows caused by EVs
and the added value of knowing their charging starting time
and duration to substantially increase the forecast reliability.
The availability of online SM measurements is only marginally
beneficial. Moreover, the increasing DER penetration barely
affects the accuracy of the algorithms when evaluated by the
skill score which combines the average coverage error and
the normalized sharpness of quantile bands. In addition, we
suggest a way to integrate quantile forecasts in an optimal
voltage control scheme where PV power curtailment can be
decided hour-ahead at a lower cost. While the general use of
forecasts in such a scheme is definitely worthwhile, the paper
shows that quantile forecasts can reduce the costs even further
compared to point forecasts. Nevertheless, the exact quantiles
to consider and the corresponding cost reduction depend on the
price difference between hour-ahead and real-time curtailment.

Based on these promising outcomes, a next step is to
investigate the optimal quantiles that maximize the cost re-
duction depending on the price situation. Different quantiles

could also be integrated in the same optimization problem
and even directly contribute to the cost function instead of
acting on the voltage limit constraint. The performance of
the suggested control scheme should also be compared with
other probabilistic approaches such as stochastic or chance-
constrained optimization where the grid quantities are seen
as random variables with a certain probability distribution. In
addition, multiple means to control voltages such as reactive
power control, online tap changing of transformers, and the
use of the EV flexibility should be considered, preferably in
a three-phase system due to the unbalanced nature of power
flows in distribution grids. Finally, the presented OPF scheme
could be adapted to congestion management, demand-side
management, or any application subject to uncertainty that can
benefit from short-term forecasts.
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