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Abstract—The presented work identifies the dominating in-
fluencing factors in electric vehicle (EV) modelling on low-
voltage distribution grids to establish guidance for reliable impact
assessments of increasing EV penetration. Seven aspects are
distinguished with respect to the modelling of the load of EVs
that influence the flows and voltages in the grid. For each of
these aspects sensitivity analyses are carried out by running
power flow simulations in a Monte-Carlo fashion to account
for the stochasticity in the model parameters. The impacts are
analysed using a variety of metrics including transformer and line
loadings. The highest sensitivities are observed for the number
of vehicles in the grid, the used charger power rating and the
modelling of driving patterns. The grid configuration as well
as locally higher EV shares gain significance for line loading
assessments. Car modelling and people’s charging behaviour play
minor roles.

Index Terms—electric vehicle, low-voltage distribution grid,
Monte-Carlo simulation, sensitivity analysis

I. INTRODUCTION

To fulfil the commitments of the Paris Agreement 2015 [1]
the transportation sector is obliged to drastically reduce its
CO2 emissions. The increased efforts towards electric vehicles
(EVs) show a route forward to achieve a decarbonisation. As
a consequence, the power grid infrastructure is expected to
face increased loading. Private and uncontrolled charging at
home, presumably the most common charging method [2],
impacts especially low-voltage distribution grids. Not only
the additional energy demand poses a challenge, but the peak
power increase emerges as the crucial factor for grid planning
and risk assessment. Fig. 1 depicts the load duration curve
(LDC) of the transformer for the household load in the selected
grid. Although the transformer peak loading (∼55%) in the
studied grid is well below operational limits, the LDC still
demonstrates how rare load cases can substantially increase
the required operating range. The effect of EVs on the LDCs
and especially on peak loads requires therefore a thorough
modelling and analysis to avoid ill-informed decisions that
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lead to under- or over-dimensioning of the grid components
and potentially to higher costs for grid operators.

Fig. 1. Transformer load duration curve of household loads in January.

A common approach to evaluate these peak power increases
caused by EVs is based on measured or modelled charging
load profiles which are added to the existing loads [3], [4].
However, the rapid developments in the EV market question
the future applicability of these patterns. A main limitation
concerns the up-rise of pure battery EVs in contrast to plug-in
hybrid EVs. Moreover, the ever increasing battery capacities
and hence EV driving ranges as well as the EV usage
habits need to be considered in future assessments. Finally,
the emerging higher charger power ratings can substantially
change the charging patterns [2].

Successful attempts to model charging profiles often employ
a modular approach as reviewed in [5]. They determine
the energy and power demand based on travel data, EV
specifications, and available charging infrastructure [6]–[12].
Such a modular approach offers the advantage of flexible
modelling for future assessments and it allows for stochastic
modelling in form of Monte-Carlo simulations [9], [10].
However, the sensitivities of used modelling assumptions, e.g.
EV specifications or people’s charging behaviour, have not
been comprehensively investigated yet. While some studies
explore the influences of varying single factors such as pen-
etration levels or charger ratings [11], [12], the presented
work integrates seven influencing factors, here referred to as
dimensions, into a single framework. These dimensions split up
EV charging into a handful of tangible characteristics, which
could be expressed as questions like ‘when do people charge’
or ‘how often do people charge’. By closely investigating each
dimension and the interaction between them one can obtain
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a better understanding of their sensitivities with respect to
the overall grid load. This allows to break down complex
models into the influences they have on the basic charging
characteristics. Combining this insight with the sensitivities
found in this paper will improve the quality and reliability of
EV modelling since overly complex or simplistic models can
be identified. Furthermore, this work improves the ability to
judge whether assumptions and results may generalise to other
environments or not. In this work, the framework incorporates
a real-world case in Switzerland by using a residential low-
voltage grid model, metered household loads, and a large
scale mobility survey. In this set-up, multiple models, which
integrate regularly used modelling techniques and assump-
tions, are compared against one another for each dimension.
The resulting assessment of the dimension’s relevance may
provide guidance for future work on EV integration and system
planning.

The remainder of the paper is structured as follows: Sec-
tion II introduces the modelling of the seven dimensions,
Sec. III presents the simulation framework and Sec. IV dis-
plays the results from which Sec. VI draws the conclusions.

II. MODELLING FRAMEWORK

The modelling framework follows a bottom-up approach,
as depicted in Fig. 2. First, the charging load of individual
cars over time is generated by determining the charging
demand from driving patterns and the type of EV. People’s
charging behaviour and the used charger type then govern
the resulting load of individual vehicles in the examined grid.
The penetration level and EV placement specify how many
cars are used as well as their connection points in the grid.
The total EV load is added on top of the base load, i.e. the
metered household loads in the area, and then added to the
grid in a radial or meshed configuration.

In Sec. II-A the underlying data sources are introduced,
while Sec. II-B to II-H provide details for each dimension.
Table I gives an overview over all models.

Penetration levelEV placement

Driving pattern

Charging behaviour

Charger type EV type

Single EV load

Total EV load

Base load

Scenario realisation

Grid configuration

AC power flow

Metric analysis

Total grid load

Scenario statistics from realisation metrics

Fig. 2. Modelling framework used to assess the impact of EVs on distribution
grids, all dimensions marked in bold.

TABLE I
OVERVIEW OVER EV MODELLING DIMENSIONS AND MODELS.

Dimension Default model Additional models

Driving patterns MZMV sampling
independent GMM (A1)
joint GMM (A2)
availability based (A3)

EV type sales based average sales based sampling (B1)

Charging behaviour Gaussian threshold
uniform threshold (C1)
always charging (C2)

Charger type 0% 11kW
25% 11kW (D1)
50% 11kW (D2)
100% 11kW (D3)

Penetration level 20%
40% (E1)
60% (E2)
80% (E3)

EV placement even
mildly clustered (F1)
strongly clustered (F2)

Grid configuration radial meshed (G1)

A. Available data

Segment with X buses and X-1 lines in a
purely radial configuration

Z customers (potential EV owners), placed at Y buses.

29 (15) buses

T

BA

C
142

11 (4) buses

23

36 (17) buses

63

14 (8) buses

60

8 (3) buses

21

9
41 (20) buses

128

15 (9) buses

68

26 (11) buses

64

X (Y) buses

Z customers

7

Fig. 3. Low voltage grid with customer location.

For the study, a low-voltage distribution grid operated by
IWB, the distribution system operator of the City of Basel,
was chosen. Fig. 3 shows its main topological characteristics.
The transformer rated at 630 kVA connects the 400V level to
the higher voltage level (11kV). According to the geographical
information system (GIS) of the grid model, the 196-bus
system hosts in total 585 households at 89 connection points
which are eligible as EV connection points in this study. In
general, the main strand lines are rated at about 350A and the
household connections at 140A. In addition, a smart meter
data set with 15-minute resolution for the considered grid is
used as base load. Since the measured base load reaches its
highest values in January the work focuses on this month only.
Fig. 1 shows the LDC of the base load.

The outcome of the 2015 Swiss national travel survey
‘Mikrozensus Mobilität und Verkehr’ (MZMV) [13] forms the
basis for the driving pattern modelling. The data set consists
of about 40’000 1-day travel surveys, 20’000 of which contain
information about car movements. The data set is processed to
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yield a table of round trips that start and end at home. Stops
during a round trip, e.g. for shopping, are possible but are
not included in the modelling. Between two round trips the
car is per definition at home. Each trip is associated with a
departure time, an arrival time, a travel distance and the day of
the week on which it occurred. While each weekday is treated
separately, seasonal variations as well as geographic properties
are not considered since further splits of the data set would
weaken the representativity of the results. As the survey is
primarily based on combustion cars, it has to be assumed that
the mobility behaviour does not change with the switch to EVs
until similar surveys with sufficient EVs exist.

B. Driving pattern

The driving pattern models people’s car usage. The first
model is MZMV sampling, which directly uses trips from the
MZMV data set by concatenating them into a month-long
time series. In contrast, the following three models rely on
a parametric description that aims at resembling the nature
of the MZMV data set. Such models can be used if no
travel survey is available. The independent GMM model fits
a Gaussian mixture model (GMM) to the probability density
functions (PDF) of the departure time in the MZMV data set
and another one to the arrival time. The joint GMM model
approximates the joint PDF of the two time variables. In
contrast, the availability-based model uses the share of cars
at home, i.e. the car availability. The share varies during
the day and from its rate of change transition probabilities
between being and not being at home are calculated. Based
on the transition probabilities car trips are sampled. Fig. 4
illustrates for all four models the resulting PDFs of the arrival
time as well as the availability during the day. For the latter
three parametric models a logarithmic normal distribution
determines the driving distance for each trip. All models,
including the fitted parameters, are described in detail in [14].
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Fig. 4. Availability curve (dashed) and arrival time distribution (solid) of
driving pattern models on Mondays.

C. Electric vehicle type

The EV characteristics of interest are the car’s battery capac-
ity and the energy consumption per kilometre. Two approaches
are tested: 1) modelling a diverse fleet with different vehicle
classes [6], [11], [12] or 2) assuming a single average vehicle
using the sales-based average. Table II shows a compilation

of the most sold EV models in Europe in 2018 which forms
the basis for the analysis [15], [16]. At a later stage, increases
in battery capacity by 25% and 50% as well as consumption
variations of ±10% are considered.

TABLE II
ENERGY CONSUMPTION AND BATTERY CAPACITIES OF THE 10 MOST

SOLD EVS IN EUROPE IN 2018 [15], [16]

Model Consumption
[kWh/100km]

Battery capacity
[kWh]

Sales
[-]

Nissan Leaf 16.5 40 40609
Renault Zoe 15.7 41 38538
BMW i3 16.4 42.2 24432
VW e-Golf 16.8 35.8 21252
Tesla Model S1 18.4 100 16682
Tesla Model X1 21.4 100 12694
Hyundai IONIQ 14.4 30.5 9605
Smart fortwo 15.9 17.6 8688
Kia Soul EV 17.1 33 6641
Jaguar i-Pace 22.3 90 6319

Fleet average 16.9 49.4 -

D. Charging behaviour

While driving patterns define the times a car is available
for charging, the charging behaviour defines below which
threshold of state of charge (SOC) people start to charge.
A SOC of 0% represents a fully depleted and 100% a
fully charged battery. The first of three models follows the
analysis in [17] by approximating people’s personal threshold
by a Gaussian distribution N (45%, 19%) truncated between
[10%, 100%]. As a second model, a uniform threshold distri-
bution between [10%, 100%] is tested. In the always charging
model everybody starts to charge as soon as the SOC drops
below 100%, i.e. people charge after every drive. Regardless
of the model, the charging process is assumed to commence
upon arrival without delay to avoid complexity. The analysis
of the survey ”My Electric Avenue” [18] indicates that about
65% of EV owners charge within 15 minutes upon arrival.

E. Charger type

Two charger types with power ratings of 3.7kW and 11kW
are considered for home charging. While the power ratings
themselves are known, their share of installation is subject to
the sensitivity analysis. Starting with only 3.7kW chargers,
i.e. 0% 11kW chargers, being installed, the share of 11kW
stations is increased to 25%, 50% and ultimately to 100%.
For all chargers active power factor correction, hence a power
factor of unity, is assumed [19].

F. Penetration level

The number of EVs in the grid is expressed by four
penetration levels which are defined as the share of households
that own an EV. Starting from the load case with no EVs,
penetration levels of 20%, 40%, 60% and 80% are tested.

1All models in 100kWh configuration for simplicity and in light of overall
increasing battery capacities.
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G. Electric vehicle placement

The placement of EVs may become critical if many cars are
charged within a neighbourhood connected by the same line to
the transformer. Therefore, an evenly spread placement, where
each household’s probability of owning an EV is equal across
the grid, is compared with two levels of EV clustering. While
the mild clustering results in some local hotspots, the strong
clustering places all EVs directly next to each other.

H. Power grid configuration

Three circuit breakers in the grid (like element C in Fig. 3)
can be switched to change between a radial and a meshed grid
configuration which are both used by the grid operator.

III. SIMULATION

This section treats the combination of dimensions with the
respective models and the metrics employed for the analysis of
the power flow results. In the following, a scenario is referred
to as the selection of a single model for each dimension. For
each dimension a default model is selected as indicated in
Table I. Starting from a reference scenario, which is based
purely on default models, the variation of a single dimension at
the time provides a first indication for the dimensions’ impacts.
Subsequently, scenarios with multiple variations are simulated.
All variations are stated explicitly alongside figures, for all
other dimensions the default models apply.

To incorporate the stochastic nature of some models, each
scenario is simulated 400 times with random samples of the
selected models. For each of these 400 scenario realisations
a time-series power flow computation with a 15 minute
resolution is performed with MATPOWER [20]. The results
of each realisation are then evaluated with respect to a set
of metrics. This Monte-Carlo style approach is performed
for each scenario separately and yields the basis for the
sensitivity analysis in which the metrics of the realisations are
displayed. Since the simulation of a single scenario requires
about five hours on a standard machine, multiple scenarios
were simulated in parallel on a 36-core machine with 479 GB
RAM.

The primary metrics of interest are the relative changes in
the loading of the transformer and lines. Therefore, relative
LDC changes for each scenario realisation are computed at
selected percentiles of the LDC according to

relative LDC change =
LDCwith EVs − LDCwithout EVs

LDCwithout EVs
. (1)

Besides, the aggregated charging load over time is evaluated.

IV. RESULTS

Fig. 5 depicts the results of the simulations varying a single
dimension with respect to the default case to enhance the
intuition of each dimension’s impact. The abbreviation used
for the varied models can be found in Table I. The relative
transformer peak load increase is indicated on the left y-axis
while the absolute values are plotted on the right one. The
dashed line marks the transformer peak load (55.4%) with no

EVs added. The Box-Whisker-Plots (1,5 IQR) represent the
distribution of the 400 scenario realisations. This first analysis
suggests that, not surprisingly, variations in the penetration
level and the charger type clearly cause the biggest impact,
further investigated in Section IV-A.
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Fig. 5. Impact of single dimension variations on the transformer peak load,
values relative to the scenario without EVs (dashed line) on the left y-axis
and in absolute terms on the right y-axis, see Table I for abbreviations.

A. Penetration level and charger type

Several combinations of these two dimensions are simulated
to investigate their interaction. The resulting transformer peak
load increases are shown in Fig. 6. In a first analysis it appears
that the transformer peak load increases proportionally to the
penetration level, i.e. to the number of EVs, hence suggesting
the lack of a correlation between the two dimensions.
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Fig. 6. Penetration and charger type scenarios.

By scaling these values by the EV penetration (the number
of cars) the additional power demand per car is calculated.
The upper plot in Fig. 7 depicts this re-scaling. At first, it
again appears as if the two dimensions influence the results
independently of each other. However, when analysing only
the added EV load (lower plot in Fig. 7) a different picture
emerges. Firstly, an aggregation effect occurs, meaning that
with an increasing number of EVs the average load per car
decreases since a superposition of the peak load of all EVs,
i.e. simultaneous charging of all EVs, becomes statistically less
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likely. Secondly, the deviation between the two plots differs
depending on the charger type. Two effects are at play. On
the one hand, higher charger loads cause not only higher peak
EV loads (equivalent to the EV load per car) but also shift the
peak more towards the base load peak around 6 o’clock, hence
EV and base load peak coincide more. On the other hand, the
penetration level increase itself causes a mere scaling of the
EV load including the mentioned aggregation effect without
shifting the timing. However, the peak of the total load (sum
of base and EV load) is affected in timing which counters the
aggregation effect. Fig. 9 shows an exemplary case of the base
and EV load against time. The plot is discussed in detail in
Sec. IV-C related to the driving pattern results.
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Fig. 7. Additional peak load normalised by the number of cars.

B. Charging behaviour

When comparing different charging behaviours, the case of
people charging after every trip creates a significantly higher
peak load increase than the other two models as shown in
Fig. 8. In addition, covering the daily average energy use
(MZMV average driving distance ∼30km, average energy
consumption from II-C ∼0.17kWh/km) with a 11kW charger
requires around half an hour of charging. The longer charging
time of slower chargers leads to more overlapping of people’s
charging periods. The resulting higher coincidence factor
causes the relatively strong impact of the always charging
scenario for slow chargers; its peak load increase amounts to
nearly double the one of the other two charging behaviours.
For higher charger power ratings the peak load increase is
more similar across the three behaviours. The Gaussian and
uniform threshold models show no major difference amongst
each other. People charge in both cases every other or third
day, hence less often but over a longer period. This leads to
lower coincidence factors than for the always charging model.
The slightly higher increase seen for the uniform distribution is
explained by a bit more frequent charging and thereby higher
coincidence factors.
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Fig. 8. Charging behaviour impact for 60% EV penetration.

C. Driving patterns

Since the driving patterns and more specifically people’s ar-
rival times govern the charging period, a comparison between
the distribution of EV charging load on Mondays and Satur-
days illustrates the sensitivity with respect to driving patterns
well. On both days the number of trips (including no trips)
per person is very similar but the arrival time distributions
differ notably. This leads to a wider spread charging period on
Saturday and lower peak loads, especially for higher charging
powers as depicted in Fig. 9.
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Fig. 9. Distribution of realisations of EV load (coloured areas) including
their median (solid black line), the base load (dashed line) and the resulting
median of the total load (solid coloured lines) during a day.

With this example in mind, it becomes apparent why the
modelling of driving patterns needs special attention. The
proposed GMMs match the peak load metric obtained with
the MZMV sampling model within small margins, illustrated
in Fig. 10. Revisiting the availability curves of both models
in Fig. 4, the joint GMM model comes closer to the MZMV

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020



sampling model and hence more cars are available around
noon. However, the sharp increase around the evening is
captured better by the independent GMM model. The model
choice is therefore a trade-off and is dependent on the timing
of the critical base load. The availability-based model even
further pronounces the arrivals at noon at the cost of the
accuracy of the evening arrival times. Overall, a carefully
chosen model yields satisfactory results.
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Fig. 10. Impact of driving pattern modelling on the transformer peak load
for a 60% EV penetration.

D. Electric vehicle type

The car type modelling influences the battery discharge and
hence the charging frequency and duration of each individ-
ual EV. However, Fig. 11 shows that the model differences
between a diverse EV fleet and a single average car barely
influence the EV loads and the transformer peak load metric.
Increases in battery capacity and variations of the EV’s energy
consumption yield notable differences, especially for higher
charging power. Generally speaking, with larger batteries and
lower consumption people charge less often and hence the
coincidence factor decreases (this effect would also be seen
if the average travel distance decreased). Consequently, this
observation gives reason to use a single average car model to
represent a diverse fleet. Furthermore, it underlines that driving
patterns and charging behaviour already create diversity among
individual EVs such that the diversity of EV types becomes
irrelevant.
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Fig. 11. Impact of the car type modelling on the transformer peak load for
a 60% EV penetration.

E. Grid configuration

Up to this point the analysis focused on the transformer
peak load. The grid configuration as well as the placement
of EVs in the grid do not affect the total load (except for
losses) nor the transformer-based metric. However, the peak
load changes strongly for lines A and B in Fig. 3 when
switching from the radial to the meshed configuration. The
latter creates a levelling effect such that the previously higher
loaded line A sees lower peak line loading at the expense of
a higher peak load for line B, as shown in Fig. 12. Not only
for this case but the grid overall, the meshed configuration
provides a beneficial line loading situation. Even very high
penetration levels of 80% can be accommodated without major
peak load increases when considering the power line ratings
for the meshed grid. As mentioned before, the transformer
peak load still increases substantially under such a scenario.
This emphasises the importance of assessing the affected grid
elements separately and identifying the critically loaded ones.

Radial grid configuration Meshed grid configuration
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Fig. 12. Impact of the grid configuration on peak loading for lines A and B.

F. EV placement

Peculiar aspects of this dimension require an adjustment of
the plotting functions. Fig. 13 compares the evenly distributed
placement with a mild and an extreme clustering for lines A
and B. Due to the clusters either being located at a branch or
not, the realisations yield a non-normal distribution, illustrated
as dots for single realisations. Line B experiences substantial
peak load increases for the realisations when it happens to
host an EV cluster, but low impact in the other situations.
The global penetration level increases primarily the likelihood
of higher loads and secondarily the peak itself for clustered
scenarios. The clustering can hence be seen as a locally higher
penetration level. Since line A hosts more customers, it is
exposed to higher base loads. Therefore, the relative impact
of clustering is less extreme than for Line B. Moreover,
aggregation effects come into play causing lower peak load
increases for line A.
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Fig. 13. Impact of clustered EV placement on peak line loading for lines A
and B using single realisations (dots) and their summary (boxplots). Y-axis
according to (1) for peak loads.

G. Load duration curves

The primary focus of the study lies on the peak load,
nevertheless a brief analysis of other points on the LDC
provides further valuable insights. Fig. 14 shows that the
absolute transformer load quickly decreases when considering
non-peak hours. This means that for grids with EVs still
only a small number of hours determines the power rating
requirements if no smart charging is employed. Furthermore,
the spread of the results reduces drastically for non-peak hours
which increases their trustworthiness. This observation holds
throughout the scenarios and also for line loadings. EV impact
analyses should therefore also consider non-peak load hours
to provide backing for peak load assessments governed by
extreme cases with large uncertainties.
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Fig. 14. LDC of absolute transformer loads for an 80% EV penetration as a
distribution of realisations (coloured areas and solid line as median) and the
base LDC (dashed line).

V. DISCUSSION

This work investigated the impact of EV expansion in
a specific urban environment and models with mostly lim-
ited complexity. Nevertheless, the presented results provide
guidance for other set-ups and more sophisticated modelling
approaches. For the generalisation of the results, the essential
question to ask is how the change of set-up or model can
be interpreted within the given framework. If, for example,
EV owners use to charge at work, they will cover only a
fraction, e.g. 75%, of their daily energy demand at home,
hence at the grid area of interest. Instead of introducing a new
dimension to incorporate charging at work, one can resemble
the effect by reducing the energy consumption per kilometre
accordingly, in this example by 25%, and hence the daily
energy demand which needs to be covered at home. The
provided sensitivity analysis will then give an indication on
the impact that charging at work most likely has on the grid.
The possibility to estimate effects of such additional aspects
of EV charging by expressing them in terms of the proposed
dimensions highlights the flexibility of this work. Another
example is to consider a rural, less-densely-populated area
with a different grid infrastructure. As long as the transformer
is the critical component, the overall picture would remain
similar to the shown results; however, when individual line
loading becomes important the applicability of the provided
observations becomes limited. Analysing the effect of differing
national driving patterns serves as a third illustration of how
the presented results can generalise. By analysing how the
arrival time distributions and travel distances vary across
different countries, first conclusions on the EV impact can
be drawn. Since national travel surveys are readily available
such a first analysis requires no additional simulations. Lastly,
the framework offers the opportunity to study the effects of
complex models even before simulating a single power flow.
Investigating, for example, how agent-based traffic modelling
compares to a simple GMM in terms of the arrival time
distribution, can lead to conclusions such as: The models yield
a very similar arrival time distribution hence either models
could be used, potentially favouring the simpler one; or the
models show significant differences which would justify to
test both models. Such a comparison not only improves the
understanding of the applied models but exposes the use of
overly-complex or too simplistic ones. Although a number of
simulations is inevitable for each set-up and model choice in
order to quantify the EV impact, the framework and results
shown, clearly indicate which aspects of EV modelling should
be considered first in order to keep the computational burden
as low as possible. This ultimately will lead to more effective
resource allocation as well as more reliable results.

VI. CONCLUSION

In light of the previous analyses, the first step in EV
modelling is to determine whether the transformer or certain
power lines are the critical grid elements. If the transformer
is the limiting component, penetration level and charger types
are the dominating dimensions. If a line is at risk, the grid
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configuration strongly influences the picture and very clustered
EV placement can cause a further load increase.

Driving patterns constitute a major influencing factor on
the results. Careful modelling, as for the presented models,
can resemble the results obtained with the original driving
pattern data set within satisfactory margins, especially when
focusing on the arrival time distribution. EV characteristics
and charging behaviour reveal a low sensitivity, unless they
significantly impact people’s charging frequency and hence
the coincidence factor of EVs.

The peak EV charging load and its timing with respect to
the base load peak mainly determine the impact assessment
results. Since charging power, penetration level and driving
patterns are the governing factors associated with modelling
uncertainty, these dimensions should be subject to parameter
variations in any work that aims at assessing the impact of
EVs reliably. Further off-peak load analyses can add value for
lifetime and risk assessments due to higher confidence.

The analysis of how other set-ups and models affect each
dimension of this framework presents the opportunity to gen-
eralise the shown results. These insights not only improve
the understanding of model assumptions but also allow for
more reliable impact assessments. With the future introduction
of control strategies additional dimensions occur, e.g. the
control strategy type and how many people apply it. While
the dimensions’ impact on the effectiveness to shift and reduce
peak EV loads remains to be determined, controlled charging
is expected to be a promising way forward for grid operators
to foster EV integration into the grid.
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