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Abstract—This paper is focused on the day-ahead prediction
of the onshore wind generation. This information is indeed
published each day, ahead of the market clearing, by European
Transmission System Operators (TSOs) to help market actors in
their scheduling strategy. In that regard, our first objective is
to improve the forecast performance by efficiently capturing the
complex temporal dynamics of the wind power using recurrent
neural networks. Practically, advanced architectures of Long
Short Term Memory (LSTM) networks are implemented and
compared. Secondly, in order to continuously refine the predic-
tion tool, different techniques for recalibrating the model during
its practical utilization are analyzed. This procedure consists
in adjusting the parameters of the neural networks by taking
advantage of the new information revealed over time, without
the (time-consuming) need to retrain the model from scratch
using the whole available dataset. Finally, the financial savings
from the improvement of the forecast accuracy are estimated.
Outcomes from the Belgian case study show that an optimal
model recalibration can significantly improve forecast reliability,
thereby decreasing the balancing costs of the system.

Index Terms—Bidirectional LSTM, Deep Learning, Electricity
Markets, Recalibration Forecast, Wind Power Prediction.

I. INTRODUCTION

The liberalization of the electricity sector has introduced
new prerogatives for Transmission System Operators (TSOs),
among which the task of facilitating the access to the market
for all actors. In that regard, TSOs must provide various
information to market participants such as the anticipated wind
generation. With the increased contribution of such weather-
dependent (and thus, uncertain and intermittent) renewable
generation, this forecasting task has recently become essential
for ensuring a reliable and cost-effective system operation.

Researchers have thus studied a variety of techniques for
wind prediction. Firstly, statistical approaches based on the
inference (from observed data) of basic statistics such as the
mean, variance and autocorrelation have emerged [1], [2].
However, the underlying assumptions often involve that such
forecasters rely on simple linear models which are not able
to capture the nonlinear characteristics (such as the different
ramp rates) of the wind. In parallel, physical models were
also developed, but they necessitate a complex mathematical
description of the environment, which is computationally in-
tensive, and often based on arbitrary simplifying assumptions
[3]. Such models are thus often employed for longer term fore-
casts. To address these issues, machine learning approaches
have recently been tested by the prediction community, and

have progressively exhibited better performances than classical
methods [4]-[7]. This trend is mainly driven by the ability of
such techniques to accurately capture and represent hidden
characteristics of complex variables, without the need to arbi-
trarily define the model complexity. It should however be noted
that outputs of physics-based forecasts can be treated as inputs
of purely data-driven approaches in order to enrich their input
feature space with physical considerations. In addition, the
flexible nature of data-driven tools, mainly neural networks,
allows to adapt their architecture to the characteristics of the
forecasting problem, thereby improving their accuracy. This
property has led to the advent of recurrent neural networks
(RNNs), deep learning structures that are able to build an
internal representation of past events, thus propagating relevant
information through time. Their success has been fostered by
the Long Short Term Memory (LSTM) architecture, which
has shown a high potential in processing time series such as
wind power [8]-[9]. However, different LSTM-based networks
can be developed, depending on how the data are fed into the
model. Our objective is thus to implement the most relevant
networks, and to compare their accuracy on a fair benchmark.

In parallel, one of the main challenges that still needs
to be properly studied relates to the recalibration of the
models. Indeed, once the forecaster is trained (using historical
observations), it is then used for actual field operation (on new
data). But, at that stage, the literature is very sparse on how
the model should be updated with the new information that is
revealed at each time step. In [10], the models are re-trained
from scratch (using all the historical database) on a daily
basis, but at the expense of a continuous utilization of large
computational resources. In this work, we aim at improving
this naı̈ve approach by retraining the existing forecaster at
optimal time intervals (e.g. every day, week, season, etc.) with
a sliding window that includes the relevant set of past obser-
vations. This interest is strongly driven by long-term weather
forecasting tools, which have demonstrated the interest of such
recalibration strategies by periodically retraining their models
using only the most recent years of data [11].

Practically, we want to quantify to which extent it may be
beneficial to locally increase the variance of the model (by dy-
namically over-fitting to recent conditions) rather than to rely
on a single static model that performs well in average along
the year but that is suboptimal for each of its constituting sub-
periods. The underlying objective is to regularly adapt/rescale
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the model to any changes in long-term trends, or to the
time-varying predictability (since some time periods may be
intrinsically less variable than others). It should be noted
that an alternative approach to alleviate such issues consists
in combining forecasts from multiple models simultaneously
(e.g. through ensemble learning) [12]-[15]. Overall, the three
main contributions of the work can be summarized as follows.

Firstly, we exploit the flexible nature of neural networks by
implementing three different recurrent architectures, based on
Long Short Term Memory (LSTM) cells [16]. The objective
is to predict (at 11:00 a.m. in day-ahead) the expected wind
generation for the 24 hours of the next day. The three
models, i.e. (i) the encoder, (ii) the decoder, and (iii) the
bidirectional decoder differ in the way they capture space-
time dependencies, which affects their predictive capabilities.
In that regard, their accuracy is not only compared to state-
of-the-art techniques (such as gradient boosting where new
models are created to correct the errors of prior models and
then added together to make the desired prediction), but also
with the predictions performed and published by the TSO.

Secondly, the development of a recalibration procedure is
proposed. This process allows to adjust the parameters of the
neural networks by taking advantage of the new information
continuously revealed over time (during the actual daily uti-
lization of the forecaster), without the time-consuming need
to retrain the model over all the historical data set.

Thirdly, the financial impact of prediction errors (on both
the TSO and wind producers) is estimated. This allows to
evaluate the financial gain of improving forecasting models,
in particular by relying on efficient recalibration strategies,
due to the saving of balancing costs (which are needed to
compensate the wind imbalances).

The paper is organized as follows. In Section II, we develop
different LSTM architectures to capture the dynamical behav-
ior of wind generation, and we discuss several strategies for
recalibrating the model over time. Section III focuses on the
prediction accuracy of the models, which are compared with
outcomes from TSO and state-of-the-art methods. The best
model is then optimally recalibrated over time, which allows
improving the prediction quality. Section IV finally evaluates
the costs incurred by prediction errors, using actual market
data. Finally, in Section V, conclusions are exposed.

II. METHODOLOGY

This section is divided into two parts. Firstly, different
LSTM-based architectures of recurrent neural networks are
presented (Section II-A). Secondly, the methodology to iden-
tify the best recalibration policy is discussed (Section II-B).

A. Development of LSTM-based forecasting tools

This work focuses on neural networks, which are flexible
tools (theoretically able to learn any complex nonlinear func-
tions) that combine multiple advantages. In that respect, the
complexity of the model can be tailored to the complexity of
the task (thereby avoiding both under- and over-fitting issues),
and the architecture can be adapted to the specificities of the

problem [17]. Given that wind generation is an inherently dy-
namic process, we consider recurrent networks (Fig. 1), which
are purposely designed to process temporal dependencies.
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Fig. 1. General representation of recurrent neural networks (RNN) with
cyclical connections that act as a dynamical memory (a), i.e. the network
is unrolled though time to seamlessly represent time dependencies (b).

The general principle of recurrent neural networks (RNN) is
to generate the prediction yt based on the input information xt,
for each time step t ∈ T of the prediction horizon of interest.
Based on historical data, the RNN is trained to minimize the
error between its output yt and the actual observation dt.

The RNN is made up of different stacked layers, each one
composed of multiple neurons, which overall define the model
complexity. The recurrent architecture, which is llustrated in
Fig. 1, is also characterized by cyclical links, connecting the
state of the neurons among consecutive time steps t, thereby
propagating information through time.

In recent years, RNN applications have been very successful
for a variety of problems such as speech recognition or
language modeling and translation [18]. However, RNNs are
known to struggle in capturing long-term dependencies, such
that relevant information arising from longer term periodicities
(such as seasonal effects) can be lost. To address this issue,
LSTM neurons were developed, and rely on gating units that
regulate the flow of information that is propagated through
time. The principle of LSTM cells is depicted in Fig. 2.

Cl
c,t−1 hl

t−1 hl−1
t

InputsInputs

× f lc,t

gate
Forget
gate

Forget

σ σ

ilc,t

gate
Input
gate
Input

tanh

×

+

σ
olc,t

gate
Output

gate
Output

tanh ×

Cl
c,t hlc,t

OutputsOutputs

Fig. 2. Single-cell LSTM memory block c (pertaining to layer l at time t).

In Fig. 2, we observe that the LSTM cell c at layer l at
time step t is fed by three different contributions, i.e. hl−1

t the
output vector (of all LSTM cells) of the layer below at the
same time, hl

t−1 the output vector (of all LSTM cells) of the
same layer at the previous time step, and Cl

c,t−1 the state of
the cell c at the previous time step (which acts as a dynamical
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memory). Overall, the LSTM neuron is composed of 3 gated
units (input, output and forget gates) and the LSTM layer l is
thus characterized by the following composite function:

flt = σ
(
Wf hl−1

t + Wf hl
t−1 + bf

)
(1)

ilt = σ
(
Wi hl−1

t + Wi hl
t−1 + bi

)
(2)

Cl
t = flt Cl

t−1 + it tanh
(
Wc hl−1

t + Wc hl
t−1 + bc

)
(3)

ol
t = σ

(
Wo hl−1

t + Wo hl
t−1 + bo

)
(4)

hl
t = ot tanh(Cl

t) (5)

where σ is the logistic sigmoid function, and it , ft and ot

are the activation vectors of the input, forget and output gates
respectively, whereas Ct stands for the cell activation vector.
The weight matrices W• (i.e. links between LSTM neurons)
and the bias vectors b• are the parameters of the network that
need to be optimized during the learning procedure.

In this work, three different LSTM-based architectures,
which differ by the way they process temporal information, are
developed and compared, i.e. (i) the encoder, (ii) the decoder,
and (iii) the bidirectional decoder.

The encoder, which is shown in Fig. 3, is a topology
that sequentially process the past information x−k:0, and that
generate the predictions y0:T at the end of the k + 1 steps
of the sequence. The issue consists thus in feeding the tool
with the available (known or estimated) information about the
future x1:T . Such information typically comes from numerical
weather forecasts, which provide estimation on future temper-
atures, cloud covers or wind characteristics. It is thus essential
to include these features as input data for the prediction model.
In the encoder, it is done by providing those data at the last
time step of the input sequence, which may not be optimal.

RNN

x−k ...

RNN

x−2

RNN

x−1

RNN

x0

y0:T

Fig. 3. General representation of the encoder architecture, where the available
future information x1:T is fully provided in x0.

Another option for incorporating the temporal information
is to rely on a decoder, which generates a prediction at each
time step of the horizon. This design, which is represented in
Fig. 4, is traditionally used for on-line tasks (such as sequence
generation), and is thus not well suited to take advantage of
past information. Indeed, these data need to be incorporated
at the first time step of the decoder (i.e. into x0), which may
thus struggle to properly extract the relevant information from
both short- and long-range past features.

To improve on the decoder architecture, a third topology,
i.e. the bidirectional decoder, is investigated. This design aims
at optimally exploiting (at each time step) the complete con-
textual information. For the prediction at time t, the network
is not only fed by the past information (by exploiting the
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Fig. 4. General representation of the decoder architecture, where the past
information x−k:0 is fully provided in x0.

traditional recurrent connections) but also by the available
future data (such as the estimation of weather variables at
next time steps). The underlying idea is that the available
information at time t + i with i > 0 (e.g. through weather
forecasts) can help explaining what will happen at time t. As
we can see in Fig. 5, the bidirectional decoder is composed
of two separate hidden layers, both of which connected to the
same output layer (providing the predictions of interest). The
resulting topology treats (simultaneously) the input sequence
forwards and backwards, thereby leveraging all surrounding
context in the input sequence.
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Fig. 5. General representation of the bidirectional decoder.

B. Recalibration strategy
In general, prediction errors arises from (i) incomplete or

noisy explanatory variables (e.g. due to the chaotic nature of
weather conditions), and (ii) model inaccuracies (commonly
referred to as functional form misspecifications). Here, we
ensure that all models rely on the same information (using all
available inputs), and we try to determine the best parameters
for each individual model (to minimize its misspecifications).

However, when the same prediction model is used each day
(with the same fixed parameters each time), two problems
inevitably arise. Firstly, the model does not take advantage of
the new information that continuously becomes available over
time (and that can be used to improve the accuracy of the data-
driven model). Secondly, the model may be good in average,
but not optimal for each sub-period of the year. To address
both these issues, a recalibration of the model is investigated,
where the model can be slightly over-fitted to most recent
data (e.g. the inner dynamics of the model will differ between
winter and summer months).

As represented in Fig. 6, when identifying the best recali-
bration strategy, two questions need to be answered :

• what is the frequency at which the model needs to be
recalibrated, i.e. the optimal number of days p between
two recalibrations ?

• what is the size of the sliding window, i.e. the number
of days r whose information is exploited to adjust the
parameters of the forecaster ?
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Fig. 6. Recalibration strategy: the model i−1 is updated with the information
from the r previous days to obtain model i, which is then used for the actual
day-ahead predictions for each of the next p days. Then, the model i is updated
using data from the r past days (to obtain model i+1), and the same procedure
is carried out over time.

To determine the best values of r and p, a design of ex-
periments is carried out, and the outcomes are fully discussed
in Section III-C. In particular, we show that too frequently
rescaling the model is irrelevant and counter-productive. In that
regard, for identifying the extent to which the model needs to
be modified, three strategies are investigated. Firstly, an ideal
(non-realistic) benchmark is considered, which yields the best
outcome that can be expected from the recalibration. To that
end, the model is trained on the r past days, but the p days to
predict are used as validation set. In reality, these days cannot
be used as validation (since they are not yet realized). By doing
so, we ensure that the model is recalibrated in such way that
it will provide the best outcomes for the days to predict. A
second method selects the validation set in a classical way
(using 10% of the historical information), so that the model
is trained on the remaining 90% data, until convergence is
achieved on the validation set. The third model is trained
with a fixed number of epochs (i.e. we impose the number
of iterations of the gradient descent algorithm through the
training sequence of r days), so that no data are discarded
for the validation set.

III. CASE STUDY

In this work, we focus on the deterministic prediction of
the Belgian onshore wind generation. Our results can thus
be compared with those of the system operator (i.e. Elia),
which publishes each day (at 11.00 a.m., 1 hour before the
closure of the day-ahead market) its hourly forecasts in order
to promote a more competitive and transparent market. Indeed,
a better prediction will result in better information for market
players, hence increasing the reliability of their bidding policy.
To compare models on a fair basis, our predictions are also
carried out at 11.00 a.m. for the 24 hours of the following day.
Thus, the prediction horizon of interest ranges from m = 13
to 37 hours into the future. The prediction tool used by the
TSO is not disclosed for confidentiality reasons.

A. Data pre-processing

The available dataset includes the onshore wind power
(aggregated at the Belgian level) for four years, starting from
2014 to the end of 2017. These four years are separated into
a training, a validation and a test set. The training set starts
on January 1, 2014, and ends on September 30, 2016, the
validation set is composed of the next three months, and the
year 2017 is used as test set.

The prediction tools are fed by input (explanatory) variables
of different types. Firstly, we use weather data (such as
temperature, cloud cover, etc.) that are expected for each
hours of the next day. This information typically comes from
advanced meteorological models. For this work, we had only
access to the data from a single station (located at the center
of the country). It is worth noting that the performance of the
models could be increased by leveraging space-time informa-
tion [19]-[20] Secondly, the last measured values (typically
the previous 6 to 48 hours) of wind generation are highly
important to capture the dynamics of the variable, and are thus
provided to the models. In particular, different time intervals
are compared (during the inputs and hyperparameters selection
at the end of which the best model is selected). Thirdly,
temporal information (hours of the day, day of the week and
month of the year) is also used to better capture multi-scale
time characteristics [21]. Finally, the installed capacity of wind
generation is also used as input (to capture the increase in the
wind power capacity). As a reminder, all models used in the
paper are trained using the same available information, and the
differences between their individual performance is thereby
only driven by their intrinsic ability to capture the complexity
of the forecasting task.

Before training the model, it is necessary to standardize
the data for two main reasons. First, different variables are
typically associated with different ranges, e.g. the scale of
temperature values (in ◦C) is naturally lower than the historical
wind generation (in MW) by several orders of magnitude.
However, it does not mean that the latter variable is that much
more important than the first one. Such differences will lead to
more difficulty in correctly adjusting the weights of the neural
network, resulting in poor outcomes and longer simulation
times. Secondly, the range of variables must be adapted to the
activation function of the LSTM. For instance, the hyperbolic
tangent in (3) and (5) reaches saturation when the input is
higher than 2. Feeding the network with higher values thereby
wipes off the processing power of the network. The scaled
variables Xscaled ∈ [0, 1] are computed as:

Xscaled =
X −Xmin

Xmax −Xmin
(6)

where Xmin and Xmax are the minimum and maximum values
of the database for each variable X .

B. Comparison with state-of-art approaches

In this part, we calculate the prediction accuracy (over the
test year 2017) for the three developed LSTM-based archi-
tectures, the encoder (Enc.), decoder (Dec.) and bidirectional
decoder (B.Dec.). The models are trained using the ”Adam”
optimization algorithm [22]. These models are compared to
the predictions published by the Belgian TSO, as well as to
other classical methods, i.e.:

• Multi-Layer Perceptron (MLP) [23], the basic architec-
ture of feedforward neural networks, containing neurons
with rectifier linear units (ReLUs) as activation function.
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• eXtreme Gradient Boosting (XGBoost), a (multi-stage)
ensemble method in which new models are sequentially
created to forecast the residuals of the global model
obtained at the previous stage. At each stage, models
are trained (updated) together (using a gradient descent
algorithm) to make the final prediction [24].

In practice, Python 3.6.0 and the Keras library (with the
TensorFlow backend) have been used for implementing neural
networks, whereas the scikit-learn library has been employed
for XGBoost. The complexity of each technique is opti-
mized within an (hyperparameters optimization) procedure
that compares the performance of a large number of different
architectural variations of the model. This procedure is time-
consuming since it takes around 1 minute to train MLP models
and 5 minutes for LSTM-based networks. The resulting opti-
mal models can then be used for predicting the wind power,
which takes less than 1 second.

The results are represented in Table I. The root mean square
error (RMSE) is used as error metric :

RMSE =

√√√√ 1

n

n∑
t=1

(yt − dt)2 (7)

with n = 8760 the number of predicted values (i.e. hourly
data over the 2017 test set), yt the output of the prediction
model and dt the actual measured value.

TABLE I
COMPARISON OF LSTM-BASED MODELS WITH OTHER METHODOLOGIES

Methodology MLP XGBoost Enc. Dec. B.Dec. TSO

RMSE (MW) 128 140 127 125 115 111

Interestingly, the bidirectional decoder (B.Dec) outperforms
other LSTM-based tools, which can be explained by its
tailored architecture that empowers traditional RNN by better
capturing temporal dependencies. Overall, all recurrent models
are more accurate than classical methods (MLP and XGBoost).
The optimal complexity of the bidirectional network is given
by a single hidden layer with 32 LSTM neurons in its two
constitutive forward and backward layers (Fig. 5). Moreover,
the best results were obtained by feeding the models with 2
days of historical wind generation.

Overall, those results are very promising since they are
closely challenging the performances of the TSO, which has
potentially access to more input features (such as several
meteorological stations in Belgium). Indeed, our best model
(i.e. bidirectional decoder B.Dec.) has an error of 115 MW
while the TSO has an error of 111 MW (over the year 2017).
In the next Section III-C, we will investigate (for the B.Dec.)
whether adjusting the model at regular intervals throughout
the test year can improve the prediction accuracy.

C. Performance of the recalibration

Firstly, we define the ideal benchmark for the (B.Dec)
model calibration. The results are shown in Table II, where

the calibration is performed in different conditions, i.e. for a
calibration performed every p days, using the information from
a number r of past days.

TABLE II
PERFORMANCE OF DIFFERENT RECALIBRATION STRATEGIES FOR THE

IDEAL BENCHMARK.

RMSE (MW)
r

1 day 7 days 30 days 90 days

p

1 day 102.76 102.06 101.64 104.22

7 days X 101.96 100.3 102.91

30 days X X 101.95 102.94

90 days X X X 105.5

From Table II, we see that recalibrating the initial model
(RMSE of 115 MW) in an optimal fashion can significantly
improve its accuracy (to reach a RMSE of 100 MW, i.e.
improvement of 13%), thereby surpassing the performance of
the TSO model. Outcomes show that the ideal frequency for
recalibrating the bidirectional decoder is p = 7 days, with an
historical database composed of the past r = 30 days. These
parameters will thus be used in the rest of the paper (for other
recalibration methods). The value of these parameters can be
explained by the nature of the learning procedure. Indeed,
training the model on a lower number of days (or, on a more
extreme fashion, after every hour) results in over-fitting the
recalibrated model to these new observations (thereby loosing
the generalization capabilities of the prediction tool). On the
other hand, when the model is too rarely updated, we do not
take advantage of the beneficial effect of slightly adapting the
model parameters to the current conditions.

As a reminder, the stopping criterion of the ideal benchmark
is triggered by the performance on the days to predict, allowing
the model to perfectly over-fit on these days. It thereby yields
an upper bound of the gain that can be expected by the
recalibration. In actual field operation, these outcomes cannot
be achieved. Different practical methods are thus studied to
try reaching comparable performances.

In that regard, the most straightforward strategy consists in
relying on a conventional validation set (in a similar fashion
as the one used to train the original model). This allows to
dynamically regularize the model, by avoiding that the param-
eters are overly adapted to the training data. Unfortunately, this
validation set decreases the amount of data that can be used
during the training phase. Here, we choose a validation test
containing 10% of the dataset. As a preliminary study, we
assess the impact of the position of the validation set within
the historical database. Practically, four cases are studied : (i)
the validation set is chosen at the beginning of the dataset
(older data), (ii) in the middle, (iii) at the end (more recent
data), and (iv) randomly within the whole training sequence.
However, this sensitivity analysis shows that modifying the
position of the validation set does not influence the accuracy
of the prediction (with a difference of at most 0.1 MW).

Another approach for calibrating the model is to bypass the
use of a validation set (that decreases the number of data for
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updating the model) by considering a fixed number of epochs
(i.e. number of iterations of the gradient descent algorithm).
Finding the optimal number of epochs is a challenging task
since smaller values do not allow to fully exploit the new
revealed information, while large values result in over-fitting
issues. In both cases, we do not learn optimally. Fig. 7 shows
the prediction error for different number of epochs. A number
between 100 and 500 epochs is relatively stable and introduce
a RMSE close to 102 MW (i.e. improvement of 11%), which
is very close to the ideal benchmark. Evidently, it should be
kept in mind that retraining the model on a higher number of
epochs will inevitably increase the simulation time.
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Fig. 7. Evolution of the error regarding the number of epochs.

Finally, these methods are compared with a more simple
(but time-consuming) methodology where the model is re-
trained from scratch every p = 7 days.

Monthly errors from all recalibrated models are summarized
in Fig. 8, where we observe that the ideal (non realistic) way
for recalibrating the model systematically improves the results
(for all months of the year). Then, we see that using a fixed
number of epochs (i.e. 250 in accordance with Fig. 7) seems
to be the best strategy (outperforming all other approaches),
and leads to results close to the ideal benchmark. In this way,
retraining from scratch is less efficient than our proposed re-
calibration method (that slightly over-fit to recent conditions).
Interestingly, after recalibration, our optimal model (Epoch
fixed) shows higher accuracy than the model of the TSO.

In general, we can also note than the prediction error (quan-
tified through the RMSE) is slightly lower during summer
months. However, the winter period is the more critical in

terms of generation adequacy, and it is thus important to
have reliable information during that time. In that regard, it
is interesting to notice that our models are significantly better
than the tool of the TSO for these important months.

IV. FINANCIAL COSTS ARISING FROM FORECAST ERRORS

In this part, we evaluate the costs that can be saved by
recalibrating the wind generation forecaster. Indeed, in case of
real-time imbalance, the TSO restores the system frequency
by relying on (costly) operating reserves. Both downward
and upward reserves are needed to respectively compensate
excesses and shortages of wind power [25].

The costs associated with this balancing mechanism result
from two contributions, (i) the capacity allowance (e/MW/h)
that remunerates the procurement of power margins (that can
be activated by the TSO in case of need), and (ii) the actual
deployment of the requested energy (e/MWh). However, these
costs are supported by different actors. The TSO is responsible
to size and build the reserve capacity, and the resulting costs
(i) are transferred to the electricity bill of end-users [26]. The
reserve activation costs (ii), on the other hand, are supported by
market actors who are responsible for creating the imbalance
[27]. In this way, by enhancing the forecast reliability, we
decrease the (costly) reserve capacity to be contracted by
the TSO, while decreasing the penalties incurred to wind
producers, thus boosting their profitability.

In this work, we assume that the real-time system imbalance
originates only from the wind forecast error (i.e. the dispatch
of other resources strictly follows their committed day-ahead
schedule, and the failures of network components are ne-
glected). In accordance with the current European legislation,
i.e. the System Operation Guidelines, we consider that the
TSO defines the minimum reserve capacity (required to main-
tain the balance in the control zone) with the goal of covering
the imbalances for at least 99% of the time, taking into account
historic imbalance observations [26]. Hence, based on wind
forecast errors computed at each of the 8760 hourly time step
of the year 2017, we infer the resulting need of upward R+

and downward R− reserve capacity (as depicted in Fig. 9).
Once the sizing is determined, we consider the average annual
price (from the Belgian market) of 10 e/MWh, such that the
annual costs Cr (in e) can be simply computed according to
(R+ + |R−|)*10*8760.
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Fig. 8. Comparison of monthly evolution of each recalibration model.
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Fig. 9. Representation of the method for sizing the reserve capacity.

In Fig. 9, the prediction error εt is defined as the difference
between the prediction yt and the actual value dt:

εt = yt − dt (8)

A positive error corresponds thus to overestimating the wind
production (such that upward reserves R+ are needed), while
a negative error underestimates the generation (resulting in
the activation of downward reserves R−). Table III provides
the results of the different forecasting models, i.e. the TSO
model (TSO), the static bidirectional decoder (Static), and its
recalibrated version with a validation set (Val.), from scratch
(Scratch), and with a fixed number of epochs (Epoch). Specif-
ically, we represent the need of upward R+ and downward
R− reserve capacity, and their associated costs C+

r and C−
r .

The total system costs are thus Cr = C+
r + C−

r .

TABLE III
ANNUAL BALANCING COSTS ASSOCIATED WITH EACH METHODOLOGY.

R+[MW] R−[MW] C+
r [Me] C−

r [Me] Cr[Me]

TSO 153.35 -374.57 13.43 32.81 46.24

Static 265.49 -318.72 23.26 27.92 51.18

Val. 326.16 -262.84 28.57 23.02 51.83

Scratch 283.81 -299.18 24.86 26.21 51.07

Epoch 291.88 -255.11 25.57 22.35 47.92

We see that prediction errors can strongly differ between
tools. For instance, the TSO tends to underestimate the wind
generation, leading to high costs C−

r for downward capacity.
For most of our models, the prediction errors tend to be
symmetrical (around zero), which is logical since positive and
negative errors are equally penalized in the learning procedure.
However, we also observe that our LSTM-based model (and
its subsequent recalibrations) lead to heavy-tailed distributions
of prediction errors in which extreme inaccuracies are more
frequently encountered. In that regard, even though our models
are more effective in general, they necessitate to rely on higher
balancing needs to cover 99% of the imbalances. However, we
observe that recalibrating the static model decrease these costs
by 3.26 Me (see last colum of Table III), i.e. a reduction of
6.3%, which stresses again the added value of this re-training
phase. From these observations, an interesting perspective is
to modify the model training to further penalize large errors.

Then, the financial penalties incurred to wind producers are
computed. In general, these balancing costs increase with the
severity of the imbalance position, and vary with respect to the
direction of the error. In particular, the costs curves (Fig. 10)

are constructed (and made publicly available) in day-ahead by
the TSO based on the market offers of the service providers.
There is thus no correlation between the imbalance prices and
the real-time conditions (arising, e.g., from forecast errors).

Fig. 10. Merit-order activation of reserves.

Two cases can occur. On the one hand, if the wind producer
generates less than expected (i.e. positive error εt), upward re-
serve will be activated, and he will pay the resulting activation
price (which is higher than the price he has received in the
energy market). This penalty cost Λ+ is calculated by (9).
On the other hand, if the generation exceeds the forecasted
value (i.e. negative error εt), the producer will sell the surplus
energy at the downward activation price (which is lower than
the price that he would have received in the energy market).
The resulting opportunity loss Λ− is calculated by (10).

Λ+ =

n∑
t=1

(λres+t − λDA
t ) · εt (only when εt > 0) (9)

Λ− =

n∑
t=1

(λDA
t − λres−t ) · |εt| (only when εt < 0) (10)

with λres+t and λres−t the upward and downward reserve
prices, and λDA

t the electricity price on the day-ahead market.
The financial shortfall over the year 2017 (for each predic-

tion tool) is computed using the actual price-quantity offers
in the Belgian reserve market [28], and the results are given
in Table IV. We see that all recalibrated models reduce the
shortfall of the static forecaster, up to a factor 2 for the model
relying on an optimal number of epochs. This impressive gain
is explained by the merit order effect (Fig. 10), in which
large deviations are more heavily penalized. Hence, even slight
improvements can significantly reduce the balancing fees. In
addition, we also observe that opportunity losses Λ− are much
higher than penalty costs Λ+, which arises from the fact that
the price spread between the energy price λDA

t and the price
for the generation surplus λres−t is usually much higher than
the difference between λDA

t and λres+t . Wind producers are
thus incentivized to overestimate their future generation (and
thus to pay the moderate penalty λres+t ) rather than to receive
the very low λres−t when they generate more than expected.

We conclude that relying on an (optimally-calibrated) model
allows to save 3.3 Me (for the reserve capacity) and 45 Me
(for the reserve activation) compared to a static model.
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TABLE IV
ANNUAL ENERGY COSTS FOR WINDS PRODUCERS.

Λ+ [Me] Λ− [Me] Shortfall [Me]

TSO 5.78 66.54 72.32

Static 13.13 78.28 91.41

Val. 19.09 30.05 49.14

Scratch 14.6 57.42 72.02

Epoch 17.82 27.29 45.11

V. CONCLUSION

This paper was devoted to the day-ahead prediction of
the onshore wind power generation. Firstly, we exploited the
flexible nature of recurrent neural networks to implement
different LSTM-based topologies, which all provided accu-
rate results in regards to other state-of-the-art approaches.
Secondly, we observed that recalibrating the model during
its actual utilization can strongly improve the accuracy of
predictions. In that regard, it appears that a recalibration with a
fixed (optimally-chosen) number of epochs is a very effective
solution compared to the traditional use of a validation set.
Finally, we quantified the financial impact of prediction errors
on both the TSO and wind producers. It was observed that, due
to the structure of the balancing costs, even small prediction
improvements can lead to substantial costs savings [29]. Such
results are expected to be further exacerbated if one consider
smarter operations of wind turbines [30]-[31], thereby paving
the way to further research in wind forecasting.
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