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Abstract—This paper addresses the problem of managing
load under energy scarcity in islanded microgrids with multiple
customers and distributed solar generation and battery storage.
We explore an understudied, practical approach of scheduling
customer-specific load limits that does not require direct control
of appliances or a market environment. We frame this as a
stochastic, model-predictive control problem with forecasts of
solar resource and electricity demand, and develop alternative so-
lutions with two-stage stochastic programming and approximate
dynamic programming. We test the efficacy of the alternative
solutions against heuristic and deterministic controllers in an
environment simulating the customers’ responses to load limits.
We show that using forecasts to schedule limits can significantly
improve power availability and the customers’ benefits from
consumption, even without the controller having a full model
of the customers’ responses.

Index Terms—Load management; microgrids; demand-side
management; predictive control; optimal control

I. INTRODUCTION

Without measures for microgrid operators to manage load or
communicate scarcity, customers in energy-constrained micro-
grids will experience suboptimal interruptions. For example,
in an islanded microgrid with multiple customers sharing
limited photovoltaic generation and battery storage capacity,
high daytime loads on cloudy days might lead to evening
interruptions of low-power / high-value loads such as lighting.
This problem could exacerbate inequity across customers, for
example, if some are only able to consume electricity in
evening hours when interruptions are more prevalent.

We seek to improve the allocation of energy services in
time by establishing dynamic load limits based on forecasts
that allow customers to consume energy over a time window
in quantities up to, but not in excess of, the limit. This
control problem is related to other flavors of microgrid Energy
Management Systems (EMS) and connected methodologically
to recent work on Stochastic Unit Commitment (SUC). The
classic unit commitment problem schedules generators to min-
imize startup, shutdown, and variable fuel costs while meeting
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an estimate of inflexible load. The stochastic extension typi-
cally minimizes a measure of the expectation of costs over a
set of uncertain scenarios while satisfying constraints [1]–[4].

Solutions to the stochastic microgrid EMS problem in the
literature typically employ the same scenario approach as
its SUC counterpart, but in different contexts with varying
models of physical systems, points of control, and objectives.
Generally, the microgrid has local intermittent renewable gen-
eration and energy storage, can be either grid-connected or
islanded, may contain dispatchable generation, and may have
controllable loads. If the microgrid is grid-connected, the main
grid is treated as an unconstrained resource, but with a time-
varying price entering the optimization problem [5]–[7]. In
islanded or off-grid microgrids, dispatchable generation or
flexible load [8] is used to balance supply and demand.

Our system of interest can be classified as an islanded
EMS where supply-demand balance is met by flexible demand
and storage dispatch, and lost load is assigned a cost in the
EMS optimization problem. Prior related studies assume load
is directly controllable [9], [10], or that customers respond
to a pricing signal [7], [11]. Direct load control and time-
varying prices are promising pathways; however, they have
some limitations. Direct load control requires ubiquitous re-
motely controllable appliances and is intrusive to customers,
particularly if very large demand shifts are required during
periods of scarcity. Time-varying pricing requires carefully
designed price formation rules and sufficiently responsive load.

In contrast, load limits require only broadcasting a limit to
customers and the ability to disconnect load at the meter if the
limit is exceeded. Although this approach is more blunt than
direct load control or pricing, it is simple and inexpensive to
implement. In the simplest case, the load limit can be sent to
the customer directly via a mobile interface, in which case they
would manually adjust their consumption. More sophisticated
smart appliances could automate the adjustment for the cus-
tomer, but are not required. In either case, using the total load
limit preserves privacy and a degree of customer autonomy
without distributed automation or a structured market. Load
limits are advocated in [12], although that study works within
the context of market-based solutions.

In the framework we present in this paper, an operator is
held accountable implicitly for unreliable service and chooses
load limits that maximize a simplified value metric of each
customer’s energy consumption. We show that this choice
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can be formulated mathematically as a sequential decision
problem, which is well-known to have significant computa-
tional complexity [13]. This complexity is intensified by non-
convexities in the model of demand subjected to load limits.

We develop two approximations and reformulations to re-
duce the complexity of the problem. The first uses two-stage
stochastic programming with assumptions about the forecast
to cast the problem as a less complex mixed integer quadratic
program (MIQP). The second uses approximate dynamic pro-
gramming in conjunction with two-stage stochastic program-
ming to reduce the problem to a sequence of smaller MIQPs.
We compare the performance of the approaches in simulation
against a baseline model with no control, a heuristic, and a
predictive controller that uses only the mean forecast.

The paper contributes a framework for developing stochas-
tic, predictive models for controlling load through consump-
tion limits under forecast uncertainty. The framework is novel
in separating the decisions of the customer to respond to load
limits from those of the operator to set them, providing a
mechanism for evaluating controller performance in the face
of model mismatch. We show how stochastic forecasts can be
combined with approximate models of the customer response
into an optimal decision model that can be solved with out-
of-the-box numerical solvers. Our computational experiment
results show significant benefits from using forecasts in a
receding-horizon control framework, but more modest and
variable benefits from using stochastic formulations in place
of deterministic forecasts, with the conclusion that model
mismatch limits the additional benefit from stochastic ap-
proaches. The paper provides a mathematical and computa-
tional foundation for exploring different formulations of value
and mechanisms to allocate scarce electricity supply.

II. DECISION PROBLEM

We develop a method to set customer-specific load limits in
a microgrid where multiple customers share distributed solar
and battery storage with limited capacity. The load limit sets
a maximum amount of energy that a customer can consume
over a window of time. We assume a receding-horizon control
(RHC) framework where a microgrid controller acts on behalf
of the operator to compute both load limits and power injection
setpoints at a fixed time interval, and then transmits these
to customers, metering devices, and the distributed energy
resources (DERs), as depicted in Figure 1.

The essential states are the state of charge of each battery
belonging to each customer and the status of the loads and
activities that each customer requires electricity for. The
evolution of these states are affected by both the decisions
of the microgrid controller and the customer. We assume the
microgrid controller cannot control individual loads directly,
but that customers can be sent a load limit that is enforced at
their meter. We also assume the controller has no knowledge
of the customer’s decision model, activities, or individual
loads, so its decision is to set an upper bound on uncertain
consumption. However, we assume the controller is given
an exogenously determined forecast of solar power potential

and electricity demand in the absence of consumption. We
treat these forecasted variables as stochastic, which given the
dynamic nature of the system, presents the controller with a
sequential decision problem under uncertainty.

In the following subsections, we present first a relatively
simple model of the customer’s decision to adjust consump-
tion given a load limit. The purpose of this model is both
to capture model uncertainty from the controller’s limited
information and to define performance metrics for evaluating
the control strategy from the perspective of the customer. We
then formulate the controller’s decision model to set load
limits and propose specific approximate methods to make
the problem tractable. This is the core contribution of the
paper. Lastly, we briefly define a simple feedback controller to
compute power injection setpoints to balance state-of-charge
between batteries. The purpose of this component is mainly
to facilitate simulating power-sharing among DERs and to
provide a placeholder for future work to integrate the load-
limiting control with optimal power flow models.
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Fig. 1. Receding horizon control system

A. Customer decision and consumption model

We assume customers use their loads to conduct a set
of activities that they schedule stochastically around a daily
pattern. For example, lights are more likely to be used at
night for several hours at a time, and microwaves around
meal times for a few minutes. Based on assumptions about
appliance ownership and usage patterns which are qualitatively
consistent with our field experience, we randomly generate a
schedule of activities for each customer that they would carry
out if not subjected to limits. Customers derive a value when
activities are completed without interruption, but incur an
interruption cost otherwise. A customer can cancel an activity
before it begins with zero cost but also zero gain.

When a customer is sent a load limit, we assume they cancel
or interrupt activities and disconnect the associated loads to
maximize their value of completing activities minus any inter-
ruption costs from activities already in progress. We introduce
this model to emulating behavior to the first order and capture
model error in the controller when evaluating performance.
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We considered models of thermostatically controlled loads but
determined this complexity did not provide additional insight,
and recommend future work to comprehensively examine the
effects of different types of shiftable and state-dependent loads.

Formally, we assume an activity a has a start time T sa , time
to complete T ca , completion value va, interruption cost ca, and
a power consumption Pa when its associated load is on. The
activity has two states: its remaining time to completion tra
and its status σa. The status evolves as a finite state machine
with states: {0 = queued, 1 = in progress, 2 = completed,
3 = interrupted while in progress, 4 = cancelled before
commencing}. We omit the formal transition rules as they
are intuitive. Activities are initialized to tra = T ca and σa = 0.
When the start time is reached, σa → 1 and tra decrements
as time passes. Unless the activity is interrupted by either the
customer or loss of power in the microgrid, σa → 2 when tra
reaches zero. Statuses 2, 3, and 4 are terminal and the customer
receives va for σa = 2 and pays ca for σa = 3.

At a time t, when the customer is faced with a load limit
of average power l over ∆T in the future, the sets of relevant
activities are those that are already in progressA1 := {a |σa =
1}, and those that are queued but will start within the time
window A0 := {a |σa = 0 ∧ T sa < t + ∆T}. For each a ∈
A0 ∪ A1, the customer chooses either ua = 0 to cancel (for
a ∈ A0) or interrupt (for a ∈ A1) the activity, or ua = 1
to proceed as planned. The energy consumed by each activity
over the time window is Pa min(tra,∆T ) for a ∈ A1 and
Pa min(tra,∆T −max(T sa − t, 0)) for a ∈ A0. For activities
that will not be completed within the window, we assume
the customer expects no load limit in the next window and
effectively receives the completed value for activities still in
progress. This allows us to represent their decision u = {ua}
as an integer linear program to maximize their utility:

max
u

∑
a∈A0∪A1

uava +
∑
a∈A1

uaca (1)

s.t.
∑
a∈A0

Pa min(tra,∆T −max(T sa − t, 0))

+
∑
a∈A1

Pa min(tra,∆T )≤ l∆T (2)

B. Operator load-limit decision model with forecasts

We assume the microgrid uses RHC with fixed time-step
∆Tc over a horizon T . The controller decides on an action
ut to take on behalf of the operator at time t, based on the
current state xt and a probabilistic forecast Wt of exogenous
disturbances wt. In our problem, xt is a vector of the stored
energy Estor

n,t in each customer n’s battery, ut is the vector of
load limits ln,t, and wt is the solar generation potential P gn,t
and electricity demand P ln,t for each customer. We assume
Wt is a finite set of S scenarios consisting of distributed
generation and demand values at each time over the horizon for
each customer. Each scenario has a probability of occurrence
ps, which we assume to be uniformly 1

S , but could be given
explicitly by the forecast algorithm or tuned to hedge against
particular outcomes. We assume the scenarios can be derived

from historical measurements, but do not present algorithms
for doing so in this paper. The dynamics f are given by:

Estor
n,t+1 = Estor

n,t + P cn,t∆Tc , 0 ≤ Estor
n,t ≤ Emax

n (3)

where P cn,t is the average net charge power into each cus-
tomer’s battery. P cn,t is determined implicitly by the con-
troller’s action, the state variables and disturbances across all
customers, and constraints defined subsequently, such as the
capacity of each battery Emax

n and conservation of energy.
A critical detail in RHC is that the operator makes the next

decision after observing a realization of the forecast wt, the
new state xt+1, and given a new forecast Wt+1; however, to
make the optimal decision ut at time t, they have to compute
what decision they would make at the next time-step given all
possible outcomes, and so on over the horizon. This requires
assuming how the forecast will be updated as realizations are
observed, which we denote with the function g. The proper
definition of g is ambiguous without additional information
about the forecasting process, but has implications for the
decision model; we discuss this in detail after stating the
decision model in its general form.

The objective is to maximize the expected benefit of using
electricity in the current time period plus the expected future
benefit in subsequent time periods. This multi-stage decision
problem can be represented mathematically in general with
(4)-(8), where u′t denotes hypothetical actions to take at the
present time t and τ ∈ [t, t+T−1] denotes time-steps over the
horizon. Note that the variables defined for τ > t are predicted
future trajectories. Similarly f and g are models and do not
necessarily match the physical or simulated system dynamics
exactly. Qt determines the expected benefit over the forecast
horizon for any state and action, and is defined recursively as
a sum of the expected present benefits b and the future benefits
Vt+1 given the new state and new forecast. Vτ is the maximum
value from time τ assuming the operator acts optimally given
state xτ and forecast Wτ .

ut = argmax
u′
t

Qt(xt, u
′
t,Wt) (4)

Qτ (xτ , uτ ,Wτ ) =EWτ [b(xτ , uτ , wτ )+

Vτ+1(xτ+1,Wτ+1)] (5)
Vτ (xτ ,Wτ ) = max

uτ
Qτ (xτ , uτ ,Wτ ) (6)

xτ+1 =f(xτ , uτ , wτ ) (7)
Wτ+1 =g(Wτ , xτ , uτ , wτ ) (8)

Vt+T (x,W) ≡0 (9)

We assume for simplicity with (9) that the future benefit at
the end of the horizon is zero regardless of the final battery
state, but this can be replaced with any linear or quadratic
function. We define the benefit b as a quadratic function of the
actually used load power Pu averaged over a time-step. Pu is
not directly controllable, but is a stochastic variable influenced
nonlinearly by the load limit l, whose realization depends on
the customer decision and information not available to the
controller. To formulate the controller’s decision, we model it
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as (11), which is an overestimate of consumption because the
customer is unlikely to be able to adjust exactly to the limit.

b(xt, ut, wt) =
1

N

∑
n

(
Pun,t −

1

2P l,max
n

Pun,t
2

)
(10)

Pun,t = min(ln,t, P
l
n,t) (11)

The appropriate choice of b in different contexts is an
important topic that requires careful study beyond the scope of
this paper. We select the quadratic form for the common case
where there is diminishing marginal value of consumption. In
contrast, a linear function would value all consumption equally
and effectively not steer the operator to take any actions to
“keep the lights on” by reducing the usage of a few high
power loads, which is our qualitative objective. We show in
the results that using this form yields desired behavior despite
b not representing any direct value. Eq. (10) can be modified
in several ways while preserving the same structure: it can
be shaped for different rates of diminishing marginal value,
and weighted differently for particular customers over times
of day. These parameters can be functions of past load limits or
consumption. Note also that b is increasing up to the maximum
possible load, P l,max

n , which is the power rating of their meter.
To specify g, one must assume whether each scenario

represents a single trajectory, or a Markov process where the
possible values at each moment in time are independent of
prior values. The former implies up to S possible trajectories
and final states, while the latter implies ST , effectively leading
to two different scenario trees after time t + 1, illustrated
in Figure 2. Assuming for the illustration that the scenarios
are unique over the first time-step, the two interpretations
respectively imply that the operator assumes either, after
observing wt, that 1) they will know with certainty what
trajectory they are on and then act optimally with perfect
information, or 2) they will again face an uncertain forecast
with no gained information.
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Fig. 2. Alternative interpretations of a 2-scenario forecast with a single battery
over a horizon of three time-periods.

Both interpretations are approximations of the optimal deci-
sion because the forecast itself is an approximation of reality
via a finite number of scenarios.1 Here, we focus not on which

1We refer the reader to [13, Ch. 6] for additional discussion showing how
the trajectory interpretation can in fact be cast as an approximate solution to
the Markov interpretation.

is correct – it depends entirely on the details of the forecasting
algorithm – but develop solutions for both and compare their
performance in simulation. We show that due to having fewer
trajectories, the trajectory interpretation can be computed with
two-stage stochastic programming, while the Markov interpre-
tation requires additional approximate dynamic programming
techniques to solve.

1) Two-stage stochastic programming solution with trajec-
tory forecast: The key insight and distinction of our model
from others is that the operator cannot directly control load, but
can only indirectly influence it via a non-convex, piecewise-
linear constraint as in (11). Otherwise, the problem employs
the standard two-stage stochastic model by assuming each
scenario is a distinct trajectory [5], [7], [9]:

Qt(xt, ut,Wt) =
∑
s

ps

(
b(xt, ut, wt,s)+ (12)

T−1∑
τ=t+1

b(xτ,s, uτ,s, wτ,s)
)

where the single recourse decision uτ,s for each scenario s is
a trajectory with a corresponding state xτ,s from time t + 1.
The optimization problem includes the constraints eqs. (13-26)
with variables specifed by customer n, scenario s, and over
time τ as in (12). Estor

n,t,s is fixed at the initial condition Estor
n,t for

each scenario. Pw is wasted solar (i.e. curtailed when batteries
are full), and P is net flow into the network. P c,max

n is the
maximum charge power of a battery, assumed for simplicity
to be the same as discharge power.

P cn,τ,s = P gn,τ,s − Pwn,τ,s − Pun,τ,s − Pn,τ,s (13)

Estor
n,τ+1,s = Estor

n,τ,s + P cn,τ,s∆Tc (14)

0 =
∑
n

Pn,τ,s (15)

0 ≤ Pwn,τ,s ≤ P gn,τ,s (16)

0 ≤ Pun,τ,s ≤ P ln,τ,s (17)

−P c,max
n ≤ P cn,τ,s ≤ P c,max

n (18)

−Pmax
n ≤ Pn,τ,s ≤ Pmax

n (19)
∀n ∈ [1, N ], ∀τ ∈ [t, t+ T − 1], ∀s ∈ [1, S]

0 ≤ Estor
n,τ,s ≤ Emax

n (20)

∀n ∈ [1, N ], ∀τ ∈ [t+ 1, t+ T ], ∀s ∈ [1, S]

To cast the problem in a generic form for standard numerical
optimization solvers, we replace (11) with the equivalent set
(21)-(26) using binary variables qn,s and the constant Mn :=
maxs P

l
n,t,s [14]. These constraints, along with (17), give two

disjoint cases for whether or not the load limit is binding in
scenario s: qn,s = 1 =⇒ Pun,t,s = ln,t, and qn,s = 0 =⇒
Pun,t,s = P ln,t,s. Note that the constraints only include the
decision ln,t at the first time-step, and that only one decision
is made for all scenarios, reflecting that the action must be
taken before a scenario is realized. In contrast, the operator
assumes they will be taking actions with certainty for τ ≥
t+ 1, meaning they can set a load limit exactly to the desired
consumption in that scenario. In the case where the optimal
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load limit is the maximum over the forecast, i.e. ln,t = Mn,
then any ln,t ≥ Mn is optimal, so the controller selects no
load limit with ln,t =∞.

qn,s ∈ {0, 1} (21)
Pun,t,s ≤ ln,t (22)

ln,t ≤ Pun,t,s + (1− qn,s)Mn (23)

ln,t ≤ P ln,t,s + (1− qn,s)Mn (24)

P ln,t,s ≤ Pun,t,s + qn,sMn (25)

P ln,t,s ≤ ln,t + qn,sMn (26)

This is a mixed integer quadratic program (MIQP) with
NS binary variables, and O(NST ) continous variables and
constraints. This scaling in dimension is not to be confused
with the complexity of solving the MIQP, which itself scales
nonlinearly with the number of variables and constraints.

2) Approximate dynamic programming solution with
Markov forecast: If the forecast is considered Markov,
Eqs. (4)-(8) can be solved with backwards recursion, which
in practice requires computing and storing values of Vτ (x)
for each possible x. Computing this if each of N batteries is
approximated with X discrete state-of-charge regions requires
(X + 1)N samples, which is intractable. We address this by
employing state-space aggregation, approximating the state by
the sum of energy stored in all batteries x̂τ and sampling it
uniformly at X + 1 points indexed by i. We denote samples
of the aggregated state and value function x̃(i) and Ṽτ (i). The
continous and sampled forms are related by piecewise linear
interpolation in (31)-(32), with weights ri satisfying SOS2
constraints defined for each scenario in (36)-(42).2

x̂τ :=
∑
n

Estor
n,τ (27)

x̂max :=
∑
n

Emax
n (28)

x̂τ+1 =x̂τ +
∑
n

P cn,τ (29)

x̃(i) =
i

X
x̂max ∀i ∈ {0, 1, . . . , X} (30)

x̂τ =
∑
i

rix̃(i) (31)

V̂τ (x̂τ ) :=
∑
i

riṼτ (i) (32)

Given the above, we can now define the optimization problem
with objective (33) for computing the value function Ṽτ (i)
at a sample of the state space i at time τ , given values of
the next step value function at all samples of the state space
Ṽτ+1(j) ∀j, and forecast scenarios wτ,s:

Ṽτ (i) = max
u′

∑
s

ps(b(x̃(i), u′, wτ , s) + V̂τ+1,s) (33)

The constraints are the same as the previous two-stage stochas-
tic formulation ∀s ∈ [1, S] and ∀n ∈ [1, N ], except that only

2SOS2 refers to “special ordered sets of type 2” constraints [14], which
have a structure that can be exploited for better performance by some solvers.

one time-step τ is considered (the load limit constraints (22)-
(26) are defined for time τ ), the individual state-of-charge dy-
namics (14) are replaced with the aggregate dynamics (34) and
likewise for battery capacity (35), and the SOS2 constraints
are included:

x̂τ+1,s = x̃(i) + ∆Tc
∑
n

P cn,s (34)

0 ≤ x̂τ+1,s ≤ x̂max (35)

x̂τ+1,s =
∑
j

rs,j x̃(j) (36)

V̂τ+1,s =
∑
j

rs,j Ṽτ+1,s(j) (37)∑
j

rs,j = 1 (38)∑
j

ys,j ≤ 2 (39)

ys,j ∈ {0, 1} (40)
0 ≤ rs,j ≤ ys,j ∀j ∈ [0, X] (41)
ys,j + ys,k ≤ 1 ∀j ∈ [0, X − 2], ∀k ∈ [j + 2, X] (42)

In general, b should be redefined on the aggregated state space,
but our form in (10) does not directly depend on state, so
we use the same b. Note that (33)-(42) define an optimization
problem only over one time-step. The solution process consists
of starting at time τ = t+T−1 with Ṽτ+1(j) = Ṽt+T (j) ≡ 0,
solving the above problem to determine Ṽτ (i) for each i ∈
{0, X}, repeating for τ = τ − 1, and stopping after solving
for τ = t + 1. This entails solving (X + 1)(T − 1) MIQPs,
each with a dimension on the order of NS. Once Ṽt+1 has
been determined, we solve the problem again, but only given
the initial state xt to determine the optimal action ut to take
at time t using Ṽt+1 as an approximation of Vt+1.

3) Alternative deterministic solutions: The two controllers
of primary interest are described above, but we also define
three alternative controllers for use in the computational ex-
periments. The first trivially sets no load limit, the second sets
limits according to the piecewise-linear feedback rule (43),
using only the aggregated state of charge (27)-(28) and no
forecasts, and the third uses a single forecast, computed as
the mean over all scenarios, without considering uncertainty.
The single forecast formulation is actually equivalent to the
stochastic trajectory forecast with S = 1, making the binary
variables extraneous and reducing the problem to a QP.

ln,t =


0.01P l,max

n 0 ≤ x̂t < 0.1x̂max

0.05P l,max
n 0.1x̂max ≤ x̂t < 0.2x̂max

0.1P l,max
n 0.2x̂max ≤ x̂t < 0.3x̂max

∞ 0.3x̂max ≤ x̂t

(43)

C. Power dispatch model

In a microgrid with DERs, a dispatch mechanism is required
to maintain power balance and coordinate the charge power
of each individual batteries. We model solar generation and
batteries interfaced with grid-forming converters, where each
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group n tracks a setpoint P inj,∗
n,t of power to inject into the

network and the total imbalance is shared by an automatic
generation control described below. The primary control ob-
jective here, given assumptions to ignore network constraints,
is to keep states of charge equally balanced to each other to
prevent losing instantaneous power capacity if some were to
become drained before others. This is an open research area,
but we achieve sufficient balancing with a simple, centralized,
proportional feedback controller with gain K = 2 and ∆Tc
the time-step between control action:

P inj,∗
n,t =

1

K∆Tc

(
Estor
n,t −

1

N

∑
n

Estor
n,t

)
(44)

Integrating more sophisticated predictive power dispatch
models with load-limiting to account for network constraints
and losses is an important area for future work that becomes
increasingly relevant in larger microgrids.

III. MICROGRID SIMULATION MODEL

To evaluate controller performance, we develop a simulation
model of a distributed microgrid to capture interruption events
and the evolution of battery states. We use a quasi-static
simulation of the steady-state behavior of the the primary and
secondary controls of the DER power converters, which govern
power sharing and the availability of supply. We introduced
grid frequency ∆ft as a state variable in the simulation model
to maintain instantaneous power balance. The DERs act as
synchronous interconnected areas that maintain power balance
using classic droop and automatic generation control subject to
constraints on the solar availability and battery charge [15]. We
assume the charge and discharge capacity is constrained by the
battery inverter rating P c,max

n , the free capacity of the battery,
and a linear power derating when the battery state-of-charge
is within 10% of its limits. These dynamic constraints are
captured respectively by the three terms in the min functions
defining the maximum charge P c,+n,t and discharge P c,−n,t :

P c,+n,t = min

(
P c,max
n ,

Emax
n − Estor

n,t

∆Ts
,
P c,max
n (Emax

n − Estor
n,t )

0.9Estor
n,t

)
P c,−n,t = min

(
P c,max
n ,

Estor
n,t

∆Ts
,
P c,max
n · Estor

n,t

0.1

)
(45)

The net injection P inj
n,t of each “area” n of DERs tracks the

setpoint P inj,∗
n,t with a frequency response stiffness βn subject

to the charge and solar generation capacity constraints as well
as conservation of energy given the loads Pun,t:

P inj
n,t = min(P gn,t + P c,−n,t ,max(−P c,+n,t , P

inj,∗
n,t − βn∆ft))

0 =
∑
n

P inj
n,t − Pun,t (46)

We set the stiffness of area n as proportional to the total
inverter capacity: βn = β(P c,maxn + P g,maxn) where P g,maxn

is the PV inverter capacity, and we choose β = 4. The
above system has either a unique solution for ∆ft or no
solution; in the latter case, a blackout is implied. In the event

of a blackout, meters disconnect all load (thus interrupting
customer activities) until the aggregate state of charge reaches
10%, and the DERs come back online automatically. When
there is no blackout, the solar generation, curtailment, and
battery charge are recovered from ∆ft and P inj

n,t by minimizing
curtailment, and the battery stored energy is updated incre-
mented by P cn,t∆Ts.

As shown in Fig. 1, the control system sets limits for
each customer and a power injection setpoint for each DER
every ∆Tc = 4 hours. Within that window, the DERs, loads,
meters, and customer activity states are simulated on a ∆Ts =
2 minute time-step. We assume the customer updates their
activity schedule whenever they receive a new limit and that
individual meters enforce load limits by disconnecting load if
the limit is exceeded.

IV. COMPUTATIONAL EXPERIMENTS

We conducted two computational experiments with multiple
trials to assess the efficacy and computational tractability of
the proposed algorithms using the experimental methodology
and terminology proposed in [16]. All modelling code and
data are available on GitHub, including the complete imple-
mentation of the models above, all experimental parameters,
and additional data visualization.3 We ran the experiments
on a personal computer using an Intel i7-7600U CPU Dual
Core, 2.80 GHz CPU with 16 GB of memory. We used CVX
version 2.1, build 1127, with MATLAB 2018a to develop the
optimization problems with Gurobi 9.0.1 as the solver [17],
[18]. In the simulation and timing results, we used MATLAB
compiled binaries and the Gurobi API directly instead of CVX
to improve performance.

In each trial, we simulate a microgrid of N customers by
randomly distributing 300 W PV units and 2 kWh battery units
with 1.2 kW charge power. We set the total solar capacity
to produce the average unconstrained demand of 330 W,
which was computed by simulating users’ activities, and 3
kWh of total battery capacity per kW of PV. This results in
and average 1.5 kWp PV and 4.5 kWh of storage per user,
but variable distributed, and ensures energy scarcity. Each
customer is assumed to have a maximum possible load of
P l,max
n = 10 kW. Customers are assumed for simplicity to

have the same activities and loads with parameters given in
Table I, but multiple types are supported in the simulation.
The tables dictating the probability of a customer scheduling
an activity to start in each hour of the day are not shown for
space reasons, but are available in the repository.

We used satellite-measured solar irradiance from a location
on Lake Victoria, Uganda, spanning 2004 to 2019 at one
minute resolution, to generate irradiance forecasts and real-
izations [19]. This region has active development of energy-
scarce, isolated microgrids and exhibits daily variation in
irradiance. In each experimental trial, we randomly select one
year to use as realization, and draw S times with replacement
from the remaining fifteen years for forecasts. We created

3Code: https://github.com/Energy-MAC/pscc2020-load-limiting.
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TABLE I
ACTIVITY PARAMETERS (TIME IN MINUTES)

Activity Watts Min Max Compl. Int.
Time Time Val. Cost

Electronics 1 50 5 15 0.5 1
Electronics 2 75 30 180 4 2
TV 50 30 240 1 5
Lighting 1 300 5 260 2 10
Lighting 2 450 5 30 2 6
Microwave 650 2 10 2 5
Hair dryer 1800 2 17 2 5
Clothes Washer 500 30 60 3 5
Clothes Dryer 2500 45 60 3 5
Dishwasher 1200 60 90 3 5

sample load forecasts by simulating the customer load model
with random activity schedules S times.

A. Controller Efficacy

In this experiment, we use N = 7 customers and S = 15
forecast scenarios with 48 hour horizons and simulate the RHC
for 28 days. These, and the parameters defined in previous
sections, comprise the experiment parameters. For each trial,
we draw a random start day, random DER configuration,
random customer activity schedule, and random forecasts and
realizations as confounding variables. For these confounding
variables, we compare each of the five controllers as inde-
pendent variables: no load limit, proportional feedback, deter-
ministic forecast, the two-stage model, and the approximate
dynamic programming model. For each of these, we simulate
the RHC and define three key performance metrics on the
outputs: the value of the quadratic objective function (10)
applied to realized consumption averaged over the 4 hour
decision interval, the net customer utility dervied from their
successful completion and interruption of the loads, and the
per unit average service availability index (ASAI), which is
the fraction of time power was available averaged across
customers (ASAI [20]). The objective values and customer
utility are average per user per 4 hour time-step. These results
are shown in Fig. 3, where the bar height is the median and the
range shows the 5th and 95th percentile values across trials.
We conducted 150 trials, observing that the coefficients of
variation across trials for the performance metrics stabilize by
100 trials.

The predictive controllers significantly improve customer
utility and power availability, but they do not improve the
quadratic objective measure they explicitly maximize. We
expect this is due to model mismatch where the controller
assumes customers adjust load exactly to the limits, but they
in fact reduce load below the limits. This is consistent with
Fig. 4, which shows that the predictive controllers overestimate
the objective even when accounting for forecast uncertainty.
As expected, the no control case has the highest mean load be-
cause there is no curtailment. The objective values correspond
closely to the mean load and are only slightly lower because
the quadratic term is small, especially at normally low load,
which leads us to conclude that the greater consumption drives
the higher objective value.

No Control Prop. Feedback Deterministic 2-Stage ADP
0

0.5

1

1.5

2

2.5

3

Obj.
Cust. Util.
ASAI

Fig. 3. Key performance metrics across trials.

The key result is that despite the model mismatch, optimiz-
ing for the simple quadratic value of consumption produces
an outcome that allows customers to respond to scarcity with
lower interruption costs and greater utility. This may not be the
outcome in some cases, for example if customers have very
high-value and high-power, daytime loads, but if this is known
to the microgrid operator, this can be addressed with weights in
the benefit function. Further, gains on the feedback controller
could be tuned to give better performance in particular cases,
although it would likely be challenging to set gains that are
effective across a wide variety of cases.

No Control Prop. Feedback Deterministic 2-Stage ADP
0.1

0.15

0.2

0.25

0.3

0.35

Mean Load

Obj. Ex Post

Obj. Ex Ante

Fig. 4. Objective ex post and ex ante values with mean load.

Among the predictive controllers, the two stochastic ap-
proaches yield similar results to each other; however, Fig. 3
shows they tend towards slightly higher utility and minimally
higher ASAI than the deterministic. The deterministic overes-
timates the objective relative to the 2-stage, which also overes-
timates relative to the ADP formulation if the forecast values
are independent in time. This can be shown theoretically and
is supported empirically in Fig. 4. In supplemental figures
provided in the GitHub repository, we show that the stochastic
approaches impose load limits more of the time but at higher
and less restrictive levels when they are imposed, resulting
in reductions in interruption costs. Essentially, they perform
some effective hedging, but the benefits are small and the
deterministic approach provides satisfactory performance.
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B. Computational Tractability

To test computational performance, we varied the number of
customers N ∈ {5, 15}, the number of scenarios S ∈ {5, 15},
and the time-steps in the forecast T ∈ {12, 24, 36}, and
recorded the time for each formulation of the decision algo-
rithm to converge to a solution. Table II shows the median
time over 20 trials with random forecasts and initial states.
We observed that for larger products of NS approaching the
range of 300, the solver does not reliably converge within an
hour, so we do not show results for problems of this size.
We observed that for these problems that do not converge,
approximate solutions are reached relatively quickly, but that
thousands of successive iterations in the branch-and-bound
algorithm continue with minimal improvements.

TABLE II
TIMING RESULTS (SECONDS)

N S T Time: Det. Time: 2 Stage Time: DP
5 5 12 0.01 0.01 0.97
5 5 24 0.01 0.02 1.9
5 5 36 0.01 0.03 2.6
5 15 12 0.01 0.03 5
5 15 24 0.01 0.06 9.3
5 15 36 0.01 0.09 13
15 5 12 0.01 0.04 1.7
15 5 24 0.01 0.07 3.5
15 5 36 0.02 0.11 4.7
15 15 12 0.01 0.11 30
15 15 24 0.01 0.24 47
15 15 36 0.02 0.39 61

The results show that the approximate dynamic program
generally takes longer to solve, but that the two-stage so-
lution exhibits poor scaling with the forecast horizon. Both
formulations are tractable for a real-time control scheme for
products of NS up to around 100 with a forecast horizon
of 24-36 hours. The tractability for larger products of NS
requires more research into solver customization, appropriate
solution tolerance, and convex relaxations.

V. CONCLUSIONS

This paper develops a mathematical framework for manag-
ing electricity consumption in energy-constrained microgrids
by scheduling load limits to improve the availability and
value of electricity service. We propose two techniques for
incorporating stochastic forecasts into the decision to schedule
load limits, and show how these can be modelled as mixed-
integer programs. We find that both improve metrics of the
value of electricity service and are tractable with an out-of-the-
box MIQP solver for microgrids on the order of 15 customers,
but that a deterministic approach, using only a single forecast,
yields comparable performance improvements in our particular
test case but with much lower computational complexity. Our
modelling approach and simulation environment contribute a
foundation for exploring different formulations of value and
mechanisms to allocate scarce electricity supply.
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