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Abstract—Increasing digitization of the electric power sector
allows to further rethink forecasting problems that are crucial
input to decision-making. Among other modern challenges, ensur-
ing coherency of forecasts among various agents and at various
aggregation levels has recently attracted attention. A number
of reconciliation approaches have been proposed, from both
game-theoretical and statistical points of view. However, most
of these approaches make unrealistic unbiasedness assumptions
and overlook the fact that the underlying stochastic processes
may be nonstationary. We propose here an alternative approach
to the forecast reconciliation problem in a constrained regression
framework. This relies on a multivariate least squares estimator,
with equality constraints on the coefficients (denoted MLSE). A
recursive and adaptive version of that estimator is derived (de-
noted MRLSE), hence allowing to track the optimal reconciliation
in a fully data-driven manner. We also prove that our methods by
design guarantee the coherency property for any out-of-sample
forecasts (reconciliation by design). We show the effectiveness of
our forecasting methods using a Danish wind energy dataset with
100 wind farms.

Index Terms—Renewable energy; Forecasting; Online Learn-
ing; Hierarchical Time-series

I. INTRODUCTION

Large-scale deployment of renewable energy generation
sources brings a wealth of opportunities and challenges. For
forecasting especially, the fact that production sites are ge-
ographically distributed, in a fairly dense manner, yields an
observation network that can be exploited. This eventually
allows improving the accuracy of wind power forecasts by
accounting for spatio-temporal dependencies in the underlying
processes, e.g. [1]. This effect was also observed for the case of
solar power forecasts [2], hence making the methods proposed
for wind power equally relevant for solar power generation.
However, other challenges that were unforeseen (or possibly
considered as futile) are being identified. In fact, since many
agents in power systems and electricity markets generate their
own forecasts, at various aggregation levels and independently
of each other, these forecasts may end up not being coherent.
For example, for a portfolio composed of two wind farms, the
sum of the forecasts made for these wind farms, individually,
will not necessarily be equal to the forecasts readily made for
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the portfolio. This lack of additive coherency is a challenge
when forecasts are used as input to decision-making problems
in power system operation and electricity markets.

The issue of forecast reconciliation has already been iden-
tified in the statistical modelling and forecasting literature for
quite some time now, with the first work related to energy
applications described in [3]. Since then, a wealth of relevant
works appeared, including methodological contributions and
applications, e.g. [4]. Some were readily focused on the wind
power forecasting application, as for the case of [5] for
instance. In fact, reconciliation approaches for probabilistic
forecasts were also proposed, for both electric load [6] and
wind power generation [7]. Others have looked at novel
approaches to temporal reconciliation for large-scale electricity
consumption [8]. Distributed approaches to forecast recon-
ciliation [9], based on the Alternating Direction Method of
Multipliers (ADMM), allowed to prevent potentially sensitive
information exchange between wind farm operators. However,
most of these approaches make unrealistic unbiasedness as-
sumptions and overlook the fact that the underlying stochastic
processes and optimal reconciliation may be nonstationary.

As a result, our objective is to propose a new online forecast
reconciliation approach which relaxes these assumptions and
allows to adapt to changes in the underlying characteristics of
the stochastic processes. Specifically, we make the following
contributions. First, we formulate a new objective function for
forecast reconciliation based on a multivariate regression prob-
lem with equality constraints on the regression parameters.
This leads to a batch multivariate least squares estimator with
equality constraints (MLSE). Then, we extend the MLSE esti-
mator to the online setting, and derive a recursive and adaptive
estimator inspired by recursive least squares (RLS) estimation
with exponential forgetting, which we denote MRLSE. Finally,
we prove that our estimators guarantee the coherency property
not only in-sample but also out-of-sample. In other words, the
out-of-sample forecasts will be coherent by design even though
the objective function only constrains the in-sample forecasts
to be coherent.

The remainder of the paper is structured as follows. The
forecast reconciliation problem is described in Section II. Our
proposal for forecast reconciliation is described in Section III,
in both their batch and online versions. Section IV presents
some experiments with Danish wind data, while conclusions
and perspectives for future work are gathered in Section V.
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II. FORECAST RECONCILIATION

Let {Y ∗s,t} (s = 1, . . . ,m, t = 1, . . . , T ) be the stochastic
process for wind power generation, with indices s and t for lo-
cation and time, respectively, as well as corresponding realiza-
tions y∗s,t. We denote the power observations for all m individ-
ual sites at a given time t as y∗t = [y∗1,t, . . . , y

∗
s,t, . . . , y

∗
m,t]
>.

A. Defining a Hierarchy

Individual sites are organized in a hierarchy, where quanti-
ties at upper levels are obtained by aggregating the quantities
of the individual sites. The hierarchy has L levels and N total
number of nodes. S is the set of all nodes. Nl is the number of
nodes at level l, as a subset Sl ⊂ S, such that N =

∑L
l=1Nl

and S =
⋃L
l=1 Sl. The tuple (l, j) then uniquely identifies node

j at level l. Nodes at a lower level of the hierarchy are referred
to as child nodes, and those at the lowest level (the individual
sites) are the bottom nodes. The number NL of bottom nodes
is equal to the number of individual sites m. An example of
a 3-level hierarchy, based on 5 individual sites, is depicted in
Fig. 1.

Fig. 1. Example of a 3-level hierarchy based on 5 individual
sites, with S1 = {(1, 1)}, S2 = {(2, 1), (2, 2)} and S3 =
{(3, 1), (3, 2), (3, 3), (3, 4), (3, 5)}.

If y∗t are the observations at time t in the bottom nodes, the
observations at all levels of the hierarchy yt are given by

yt = S y∗t , ∀t , (1)

where S ∈ {0, 1}N×NL is a summing matrix defined as

S =


S1 ∈ {0, 1}N1×NL

S2 ∈ {0, 1}N2×NL

...
SL−1 ∈ {0, 1}NL−1×NL

INL

 =

[
A

INL

]
, (2)

and Sl ∈ RNl×NL is a matrix whose elements slij are 1 if
the jth node of the bottom-level is a child (or grand-child) of
the ith node of level l, 0 otherwise. INL

is an identity matrix
of dimension NL. Thus, it has a block structure with a first
block A ∈ {0, 1}(N−NL)×NL for the summing operations to
go up in the hierarchy and a second block being an identity
matrix of size NL to copy the elements of the bottom nodes.

For the example of Fig. 1, the summing matrix reads

S =


1 1 1 1 1
1 1 0 0 0
0 0 1 1 1

I5

 . (3)

In parallel, consider that given a lead time k, forecasts
are issued at time t for time t + k. The forecasts for all
individual sites are denoted by ŷ∗s,t+k|t and with ŷ∗t+k|t =

[ŷ∗1,t+k|t, . . . , ŷs,t+k|t, . . . , ŷ
∗
m,t+k|t]

>. Forecasts are also is-
sued for all nodes of the hierarchy, individually and indepen-
dently of each other, and collated in the vector of forecasts
ŷt+k|t.

B. Additive Coherency and Reconciliation

Many agents in power systems and electricity markets
generate their own forecasts at various aggregation levels
independently of each other. As a result, it is highly likely
that one has

ŷt+k|t 6= S ŷ∗t+k|t, ∀t, k , (4)

meaning that the forecasts do not satisfy the hierarchical
aggregation constraints, also called additive coherency.

Definition 1. (additive coherency) The forecasts ŷt+k|t for
a hierarchy defined by a summing matrix S are said to be
additively coherent if

ŷt+k|t = S ŷ∗t+k|t ⇐⇒ H>ŷt+k|t = 0 , (5)

where

H> =
[
I(N−NL) −A

]
. (6)

Note that the matrix H naturally depends on the structure of
the hierarchy through the matrix A. As we need one equality
constraint per non-bottom node, this yields N −NL equality
constraints. The matrix H> therefore is a (N − NL) × N
matrix. For the specific case of the 3-level hierarchy depicted
in Fig. 1, we have

H> =

 1 0 0 −1 −1 −1 −1 −1
0 1 0 −1 −1 0 0 0
0 0 1 0 0 −1 −1 −1

 . (7)

Given some probably incoherent forecasts ŷt+k|t, the pro-
cess of forecast reconciliation is defined as the transformation
of the forecast vector ŷt+k|t such that it is made additively
coherent (i.e., the equality is restored). For a review of the
alternative approaches to forecast reconciliation, the reader is
referred to [10].

Remark 1. Contrarily to the case of forecasts, power mea-
surements are naturally additively coherent, since measure-
ments for upper level of the hierarchy are obtained by directly
using the summing matrix S as in (1).
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III. FORECAST RECONCILIATION WITH MULTIVARIATE
LEAST SQUARES ESTIMATION

We propose a new forecast reconciliation method which
involves solving a multivariate least squares regression prob-
lem. A set of constraints on the coefficients are added to the
objective function to ensure coherent forecasts. By doing so,
we relax the unbiasedness assumption of existing reconcilia-
tion methods [4], and we allow to use the wealth of modern
approaches for estimation in regression models including the
online learning setting. We first introduce a batch version
of our method, then we derive an online version based on
recursive and adaptive estimation with exponential forgetting.

A. Multivariate Least Squares Estimation

We model the observations at all nodes in the hierarchy as a
linear combination of the corresponding forecasts. Specifically,
given lead time k, we consider the following regression model:

yt+k = Θ>k ỹt+k|t + εt+k, ∀t , (8)

where Θk ∈ R(N+1)×N is a matrix of regression coefficients,
ỹ>t+k|t =

[
1 ŷ>t+k|t

]
∈ R1×(N+1), and εt+k a noise term with

zero mean and finite variance.
In the batch setting, we are given a dataset composed of T

pairs of forecasts and observations, for a given lead time k.
With our method, this dataset is used to estimate the regression
coefficients in (8). More precisely, we solve the following
multivariate least squares problem with equality constraints
(MLSE):

Θ̂
MLSE
k = argmin

Θ
||Yk − ŶkΘ||22 (9a)

s.t. ŶkΘH = 0 , (9b)

where Yk ∈ [0, 1]T×N and Ŷk ∈ [0, 1]T×(N+1) are given by

Yk =

y>1+k
...

y>T+k

 and Ŷk =

 ỹ>1+k|1
...

ỹ>T+k|T

 . (10)

The constraint ŶkΘH = 0 ensures that the reconciled
forecasts ŶkΘ are coherent as presented in Definition 1. After
estimating Θ̂

MLSE
k , when a new forecast ŷt+k|t for all nodes

of the hierarchy is available, the vector of reconciled forecasts

is obtained as
(
Θ̂

MLSE
k

)>
ỹt+k|t.

For the MLSE problem in (9), assuming Ŷ>k Ŷk is invert-
ible, a closed-form solution can be readily obtained following
the developments in [12], as

Θ̂
MLSE
k =

(
Ŷ>k Ŷk

)−1
Ŷ>k Yk (INL

−Ck) , (11)

where INL
is an identity matrix of size NL and Ck is a matrix

whose elements depend on the structure of the hierarchy and
on the variance of the forecast error, i.e.

Ck = H
(
H>ΣkH

)−1
H>Σk . (12)

The covariance matrix Σk needs to be estimated, possibly
making some assumptions about its structure, as for some
other reconciliation approaches [10]. Looking at (11), one
observes that the MLSE estimator is a variant of the un-
constrained multivariate Least Squares one, with a projection
given by (INL

−Ck),

Θ̂
MLSE
k = Θ̂

MLS
k (INL

−Ck) , (13)

with
Θ̂

MLS
k = (Ŷ>k Ŷk)−1Ŷ>k Yk. (14)

Based on the equality constraints in (9b), coherency is
imposed for all T pairs of forecasts and corresponding ob-
servations in the training dataset used to estimate the model
parameters. This does not ensure that those parameters will
guarantee coherency of forecasts reconciled for new data not
seen in the training set (i.e., out-of-sample). The following
Theorem shows that our method has the nice property of
implicitly reconciling out-of-sample forecasts.

Theorem 1 (reconciliation by design). By computing Θ̂
MLSE
k

using (11), for any new forecast (out-of-sample) ŷt+k|t, the

reconciled forecasts given by
(
Θ̂

MLSE
k

)>
ỹt+k|t are additively

coherent.

Proof. Consider any set of forecasts ŷt+k|t for a hierarchy
defined by the summation matrix S, and corresponding matrix
H. Based on the augmented vector of forecasts ỹt+k|t, one has

ỹ>t+k|tΘ̂
MLSE
k H = ỹ>t+k|tΘ̂

MLS
k (INL

−Ck) H . (15)

It then means that

ỹ>t+k|tΘ̂
MLSE
k H = ỹ>t+k|tΘ̂

MLS
k (H−CkH) . (16)

Considering the definition of Ck in (12), one has

H−CkH = H−H
(
H>ΣkH

)−1 (
H>ΣkH

)
(17a)

= H−H I(N−NL) = 0 . (17b)

This therefore yields

ỹ>t+k|tΘ̂
MLSE
k H = 0 , (18)

for any forecast ŷt+k|t and whatever the chosen covariance
matrix Σ.

B. Online Version of the Estimator

For most practical applications, it is beneficial to consider
online estimation, i.e., involving recursive estimation based
on update equations and some form of history forgetting.
This has the benefit of accommodating nonstationarity of the
underlying stochastic processes, while lightening the computa-
tional burden. The online version of our estimator is therefore
abbreviated as MRLSE (with ‘R’ for recursive).

At a given time t, the MRLSE estimator is defined as

Θ̂
MRLSE
t,k = argmin

Θ
St(Θ) (19a)

s.t. ỹ>i+k|iΘH = 0, ∀i ≤ t , (19b)
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where

St(Θ) =
1

2

∑
i≤t

λt−i
(
yt+k −Θ>ỹt+k|t

)2
, (20)

and where 0 < λ < 1 is a forgetting factor, generally in
the range [0.95, 1]. It is often more convenient to work with
the equivalent number nλ of observations instead, defined as
nλ = (1− λ)−1.

In practice, as common for RLS estimators, the update
equations for Θ̂

MRLSE
t,k given the previous value of the esti-

mator, Θ̂
MRLSE
t−1,k , and the new information available at time t,

is obtained through a Newton-Raphson step. An additional
projection πH on the feasible space defined by (19b) ought to
be used, similarly to [13]. This yields

Θ̂
MRLSE
t,k = πH

{
Θ̂

MRLSE
t−1,k −

∇St(Θt−1,k)

∇2St(Θt−1,k)

}
. (21)

After a little algebra, one obtains the update equations at
time t as

Rt,k = λRt−1,k + ỹt+k|tỹ
>
t+k|t, (22a)

Θ̂
MRLSE
t,k = Θ̂

MRLSE
t−1,k + (22b)

R−1t ỹt+k|t

(
yt+k(I−C)− ỹ>t+k|tΘ̂

MRLSE
t−1,k

)
.

The MRLSE estimator naturally inherits its fundamental rec-
onciliation property from the MLSE estimator, i.e., reconcili-
ation by design for any new (out-of-sample) forecasts.

IV. APPLICATION AND RESULTS

We compare our new forecast reconciliation method with
the state-of-the-art approaches using a real-world dataset from
Denmark. After introducing our case-study, we present our
forecast verification framework and some relevant bench-
marks. Finally, we provide a number of results and discuss
the advantages and limitations of the different forecast recon-
ciliation methods described previously.

A. Case Study Based on a Danish Dataset

The dataset provided by the Danish Transmission System
Operator, Energinet.dk, includes wind power measurements
for 349 wind farms in western Denmark, for the period be-
tween January 2006 and March 2012. The measurements have
a 15-minute temporal resolution. An extensive analysis of this
dataset has been performed by [14], [15], [16]. These studies
identified the conditional space-time dependencies of power
generation at the various sites, including the nonstationarity
of the underlying stochastic processes.

Only a subset of the available dataset, both in terms of
number of wind farms and time period, was selected. Firstly,
sites with non-negligible episodes with missing data were
discarded. Out of the 250 sites left, only 100 sites were
randomly selected, for simplicity. They are shown in Fig. 2.

Out of the complete dataset, a period with 70 080 time
steps (2 years) was extracted for this analysis, from 2010 and
2011. The power measurement time-series for the 100 sites

Fig. 2. The 100 Danish sites selected from the complete Danish wind power
dataset, then divided into 4 regions.

were then further cleaned, considering both erroneous and
suspicious data points. For each site, observations exceeding
1.5 times the quantile with nominal level 0.99 of the distri-
bution of observations were removed. Power measurements
were then normalized by the nominal capacity of that site.
However, as this nominal capacity may change with time, a
function computing rolling maxima was used for its estimation
(package zoo1) and adaptive normalization. Rolling windows
of 5 000 time steps were used. Consequently for the bottom
nodes, all resulting observations take value in the unit interval
[0,1].

The aggregate time-series for the various regions and the
whole portfolio were obtained by using a summing matrix S
(see Section II-A). As in the example of Fig. 1, our hierarchy
has 3 levels, with bottom nodes, regions, and the overall sum
(referred to as total). The 100 wind farms were grouped in 4
regions, as shown in Figure 2. Each region is composed of
25 wind farms, by dividing the Western Denmark area into
4 quadrants. Owing to this summation, power values for the
region level and the whole portfolio are within [0,25] and
[0,100], respectively.

Forecasts are to be generated for each and every node of the
hierarchy, i.e., for the 100 bottom nodes, the 4 regions and the
overall portfolio (total). These are referred to as base forecasts.
For simplicity, only 1-step ahead forecasts were considered,
though the methodology could be readily used to reconcile
forecasts for further lead times. Following the analysis and
results in [14], [15], [16], Auto-Regressive models with 2
lags - AR(2), were found sufficient to model the temporal
dynamics of the time-series as input to forecasting. Thus, using
the first 6 months of data as training dataset, AR(2) models
were fitted through LS minimization for each node in the
hierarchy. It was verified that those forecasts were competitive
and their quality at the level of the state of the art for such
short lead times. These could be improved by considering

1Available on CRAN at: https://cran.r-project.org/web/packages/zoo
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more advanced models and possibly online learning, though
only seen as different and possibly more accurate forecasts as
input to forecast reconciliation. The following 6 months were
then used as training for the batch reconciliation approaches.
Specifically the online approach was initialized on the first
time step of that period and then recursively updated trough
the remainder of the dataset. For simplicity, the equivalent
number of observations was set to nλ = 10, 000 though
it could have been optimized through cross-validation. This
eventually leaves the last year (2011) of data for genuine
forecast verification.

B. Forecast Verification Framework and Benchmarking

Our evaluation procedure is based on current practices for
the verification of wind power forecasts, as recently described
in [17]. To be consistent with the least squares objective used
to fit the models, i.e. the quadratic loss function, we use the
Normalized Root Mean Square Error (NRMSE) as forecast
verification criterion. For a set of T forecast-observation pairs
for the node i of the hierarchy, the Scaled Root Mean Square
Error (SRMSE) is given by

SRMSEi =

(
1

T

T∑
t=1

(
εi,t+1|t

si

)2
) 1

2

(23)

with si =


100, if i = 1 (total)
25, if i = 2, . . . , 5 (region level)
1, if i = 6, . . . , 105 (bottom level),

.

where εi,t+1|t is the one-step ahead forecast error for the
forecast issued at time t for the ith node of the hierarchy.
Score values are commonly multiplied by 100 as if expressed
as percentages (of capacity). We additionally introduce a score
that combines results for all nodes of the hierarchy, accounting
for the number of nodes at each level. This Weighted Root
Mean Square Error (WRMSE) is defined as

WRMSE =
1

NL L

N∑
i=1

NRMSEi, (24)

where NRMSEi naturally reflects the importance of each node
since relying on different scales (directly related to the number
of bottom nodes it aggregates).

Since we aim to show how forecast reconciliation con-
tributes to both restoring coherency and improving forecast
accuracy, we report improvements with respect to the base
forecasts. These improvements can be interpreted as percent-
age decrease in SRMSE compared to the base forecasts. For
a given node i and reconciliation method, this writes

ISRMSEi,method =
SRMSEi,base − SRMSEi,method

SRMSEi,base
, (25)

where SRMSEi,base and SRMSEi,method are the SRMSE values
for the base forecasts and reconciliation method considered,
respectively. A similar criterion can defined using the WRMSE
criterion.

In the following, we will consider forecast reconciliation
based on our two estimators, i.e., MLSE and MRLSE, as well
as the state-of-the-art MinT approach. A complete description
of the MinT approach to forecast reconciliation is available
in [10], while applications to wind power forecasting are
described in [5], [9]. In this work, we consider the covariance
matrix of the one-step-ahead forecast errors is estimated us-
ing the in-sample model residuals. More advanced shrinkage
covariance estimators can also be used in high-dimensional
setting. Finally, to measure the statistical significance of the
differences in scores for the various reconciliation methods, we
use the Diebold-Mariano (DM) test (see [17]). The differences
are always found significant.

C. Results and Discussion

1) Observing the need for forecast reconciliation: To first
illustrate the need for forecast reconciliation based on our case
study, we look at the lack of coherence between forecasts at
various levels of the hierarchy. Forecasts for the upper levels
of the hierarchy (regions and total) are obtained based on the
summing matrix S and then compared to the forecasts readily
produced at these levels. These differences are therefore in
the range of [-25,25] at the region level and [-100,100] at
the total level. Results are depicted in Fig. 3 (in a fashion
similar to the results in [5]) and support the statement made
with (4). These inconsistency errors are up to 4% here, at
both region and total levels. Since the various approaches we
consider hereafter allow for reconciliation by design, all those
inconsistencies are then removed.

Fig. 3. Incoherency, as expressed by (4), observed in the upper levels of the
hierarchy over a randomly chosen period of 2 weeks.

2) Impact on forecast quality: The literature on forecast
reconciliation has regularly covered the fact that reconcilia-
tion eventually yields improvements in forecast quality. For
instance already in [3], the authors made a point that their
game-theoretical optimal projection approach could reconcile
forecasts by design while providing a geometry-inspired proof
of forecast quality improvement (under a quadratic criterion).
We consequently investigate here whether forecast improve-
ments are obtained based on the approaches we proposed, and
how it compares with the existing e.g. MinT.

We first look at the score values obtained over the one-
year evaluation period covering 2011. These score values are
collated in Table I, using the SRMSE criterion expressed
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in percentage of nominal capacity (as an average for all
nodes at a given level) and related improvements with the
ISRMSE criterion. Scores values are lower as we go to more
aggregate levels thanks to smoothing effects. All approaches
yield forecast improvements, also at all levels of the hierarchy.
The online forecast reconciliation approach based on MRLSE
consistently gives the largest forecast improvements, those
being larger as one gets towards lower levels of the hierarchy.

TABLE I
IMPACT OF FORECAST RECONCILIATION ON THE QUALITY OF THE

FORECASTS, BASED ON THE SRMSE CRITERION [IN % OF NOMINAL
CAPACITY] WITH RELATED ISRMSE VALUES [IN %].

bottom (av.) regions (av.) total
SRMSE base 4.90 1.31 0.703

MinT 4.81 1.28 0.699
MLSE 4.65 1.26 0.690

MRLSE 4.53 1.22 0.676
ISRMSE base – – –

MinT 1.84 2.29 0.57
MLSE 5.1 3.82 1.84

MRLSE 7.55 6.87 3.84

More than those average values, the distribution of im-
provements among bottom nodes and regions are of utmost
importance. Results are qualitatively similar at these two levels
of the hierarchy, hence we place emphasis on bottom nodes
since relying on larger populations (100 nodes). Correspond-
ing boxplots are depicted in Fig. 4. While forecast quality
improvements are highest on average for our online forecast
reconciliation approach based on the MRLSE estimator, there
is also a high variability in those improvement. Those are
always positive and up to more than 15% for a given site.

Fig. 4. Distribution of improvements (ISRMSE) for bottom nodes and for
the 3 forecast reconciliation approaches.

3) Time-varying aspect of forecast reconciliation: As a
motivation for the proposal of an online forecast reconciliation
approach, we mentioned the fact that the underlying stochastic
processes are nonstationary. As a consequence, we expect that
the parameters Θ evolve with time throughout the dataset. This
is illustrated by Fig. 5 which show the temporal evolution of
the coefficients associated to sites 25, 31, and 96 to obtain the
reconciled forecast values for the total level. Their evolution
combine smoother and higher-frequency fluctuations. Remem-

ber that the forgetting factor used is very large (nλ = 10 000)
hence yielding an MRLSE estimator with fairly long memory.

Fig. 5. Evolution of randomly chosen coefficient (for sites 25,31 and 96)
contributing to obtaining the reconciled forecasts at total level.

Subsequently we look at the impact of nonstationarity on
the quality of the forecasts obtained after forecast reconcili-
ation. Figure 6 gathers monthly IWRMSE values for the 12
months of the verification period, and for the 3 reconciliation
approaches considered. The MRLSE estimator, which accom-
modate nonstationarity, systematically performs better than the
MLSE one, for which parameters are static throughout that
year. There is also a trend that the improvement from MRLSE
increases with time, which is consistent with the fact it is the
only approach that aims to accommodate nonstationarity.

Fig. 6. IWRMSE calculated on a monthly basis through the one-year
verification period.

4) Consistency among potential hierarchies: A fairly spe-
cific hierarchy was considered. Indeed, Western Denmark is
specifically split into 4 quadrants, i.e., contiguous areas with
the same number of wind power production sites. However, it
is of interest to see how the forecast reconciliation approaches
would perform if we were to consider different types of
hierarchies. For simplicity, we stick to a 3-level hierarchy
and the idea of having the same number (25) of wind power
generation sites in each of the mid-level nodes. Consequently
we perform a Monte-Carlo simulation experiment, for which
instead of considering geographical information, sites are
randomly assigned to the 4 regions. Strictly speaking these
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are not regions anymore, but geographically dispersed port-
folios instead. 100 replicates of this Monte-Carlo simulation
experiment are used to obtain a distribution of scores values
(SRMSE, WRMSE, and related improvements) at the bottom,
region and total levels. The results for the ISRMSE criterion
are depicted in the form of boxplots, for the various levels and
reconciliation approaches, in Fig. 7.

Fig. 7. Boxplots for the distribution of ISRMSE values over a Monte-Carlo
experiment with 100 replicates.

At the region and total levels level, there is variability in
the forecast improvements obtained, though the online fore-
cast reconciliation through the MRSLE estimator consistently
performs best. The variability is highest at the region level,
since the structure of the hierarchy highly influences potential
forecast improvement. Actually by comparing the results with
Table I, one observes that the quadrant based hierarchy is the
worst (with much lower ISRMSE values) as it is the worst
hierarchy to pick, i.e., with the smallest possible smoothing
effect. Such hierarchy randomization study could be extended
to the case of having different number of sites per region.

V. CONCLUSIONS

A data-driven approach to forecast reconciliation was in-
troduced, in a multivariate regression framework. The main
interest of that approach is that it eventually allows for online
forecast reconciliation, hence allowing to adapt to nonsta-
tionarity in the underlying stochastic processes. A proof of
reconciliation by design was also provided, making that, even
trained on specific past data, our approach allows to reconcile
any new forecasts out of sample.

The case study application concentrated on a fairly simple
setup, with 1-step ahead and short-term forecasts only, as the
main focus was the reconciliation process, which is indepen-
dent from the lead time, rather than the forecasting one. The
approach may be readily used for multi-step ahead forecasts
and day-ahead forecasting, though we expect the results to be
qualitatively equivalent.

In addition, the forecast reconciliation problem is seen
as centralized, but it could be readily distributed using e.g.
ADMM and the likes, since consisting of a convex optimiza-
tion problem. Similarly, sparsification was not considered here,
while it may be clearly of interest to minimize the number
of alterations to forecasts in the reconciliation process. This

may be considered in the future, the same way MinT has been
generalized by allowing for shrinkage. However, this will bring
some complexity in the derivation of the online estimator due
to the L1-regularization which is not continuously differen-
tiable. Finally, other types of models may be thought of in a
multivariate regression framework. Although we are restricting
our model to the linear setting, as done in all reconciliation
literature, one could generalize it to the non linear setting,
e.g. by using Support Vector Regression, Gradient Boosting or
Random Forests. While clearly reconciliation properties would
need to be verified in those cases, the non-linear setting would
make it possible to account for conditional effects (e.g. from
weather conditions and prevailing wind direction) as well as
regime-switching, either explicitly or by the use of an adaptive
forgetting factor scheme.

ADDENDUM

The proposal in the above is based on the equality constraint
in (9b), leading to Theorem 1 that ensures reconciliation by
design (for the MLSE estimator, as well as its online version
MRLSE). Actually, one can get an even more general version
of that result, which does not require the equality constraint, as
long as the measurements are themselves additively coherent.
This leads to the following corollary to Theorem 1 (which is
also valid for the online version MRLS of the MLS estimator).
A proof is also given.

Corollary 1 (reconciliation by design of the MLS estima-
tor). By computing Θ̂MLS

k using (14) and given that Yk

are additively coherent, for any new forecast (out-of-sample)

ŷt+k|t, the reconciled forecasts given by
(
Θ̂MLS
k

)>
ỹt+k|t are

additively coherent.

Proof. Given the training dataset of measurements and base
forecasts, respectively

Yk =

y>1+k
...

y>T+k

 and Ŷk =

 ỹ>1+k|1
...

ỹ>T+k|T

 , (26)

the MLS estimator is obtained by

Θ̂
MLS
k =

(
Ŷ>k Ŷk

)−1
Ŷ>k Yk = ΩkYk , (27)

where
Ωk =

(
Ŷ>k Ŷk

)−1
Ŷ>k ∈ R(N+1)×T . (28)

Breaking down matrices Ωk and Yk element-wise, and drop-
ping index k from the element indexing to avoid clutter.

Θ̂
MLS
k =

Ω1,1 . . . Ω1,T

...
...

ΩN,1 . . . ΩT,N


y1,1 . . . y1,N

...
...

yT,1 . . . yT,N

 = (29)


∑T
j=1 Ω1,jyj,1 . . .

∑T
j=1 Ω1,jyj,N

...
...∑T

j=1 ΩN+1,jyj,1 . . .
∑T
j=1 ΩN+1,jyj,N

 . (30)
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For any new forecast (out-of-sample) ŷt+k|t, the product(
Θ̂MLS
k

)>
ỹt+k|t yields

∑T
j=1 Ω1,jyj,1 . . .

∑T
j=1 ΩN+1,jyj,1

...
...∑T

j=1 Ω1,jyj,N . . .
∑T
j=1 ΩN+1,jyj,N




1
ŷt,1

...
ŷt,N

 =

(31)

=


∑T
j=1 Ω1,jyj,1 + · · ·+ ŷt,N

∑T
j=1 ΩN+1,jyj,1∑T

j=1 Ω1,jyj,2 + · · ·+ ŷt,N
∑T
j=1 ΩN+1,jyj,2

...∑T
j=1 Ω1,jyj,N + · · ·+ ŷt,N

∑T
j=1 ΩN+1,jyj,N

 . (32)

The first element is equal to the sum of the others (i.e. the
forecasts are reconciled) if and only if

∑T
j=1 Ω1,jyj,1 =

∑T
j=1 Ω1,jyj,2 + . . .

· · ·+
∑T
j=1 Ω1,jyj,N

...∑T
j=1 ΩN+1,jyj,1 =

∑T
j=1 ΩN+1,jyj,2 + . . .

· · ·+
∑T
j=1 ΩN+1,jyj,N ,

(33)

or equivalently,

yj,1 = yj,2 + · · ·+ yj,N , ∀j = 1, . . . , T, (34)

i.e. when the measurements are consistent.

It is worth noting that although this is the case in theory
and in some practical applications, there might be cases where
this consistency is not achieved in practice. Measuring errors,
missing data and subsequent imputation techniques could
for example affect data coherency and justify reconciliation
through Θ̂

MLSE
k .
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”Evaluation of wind power forecasts – An up-to-date view,” Wind Energy,
available online, 2020

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020


