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Abstract—This paper presents a mixed integer linear program-
ming (MILP) approach to deal with the volatility associated with
loads and distributed energy resources (DER) in low observability
distribution networks. Distribution networks, characterized by
having many buses and few meters, have recently faced massive
integration of DER, whose injection increases net load volatility.
To better understand how to act under such increased volatility,
the accuracy of state estimation (SE) needs to be improved. Our
approach improves SE accuracy by providing meter placement
solutions that take into account uncertainty as expressed by
multiple load and DER profile scenarios, this way mitigating
the impact of net load volatility. Solution results are illustrated
and discussed for different case studies carried out over a radial
9 bus test feeder.

Index Terms—Distribution networks, limited observability,
load and DER volatility, MILP, optimal meter placement

I. INTRODUCTION

In recent years, the European Union (EU) has been pro-
moting policies towards reducing greenhouse gas emissions
around 80-95% by 2050, as part of the Energy Roadmap 2050
[1]. To accomplish this objective, the EU set the goal of 20% of
integration of renewable energy sources by 2020 [2] and, more
recently, established a binding target of a share of at least 32%
by 2030 [3]. This process of decarbonization of the energy
sector is expected to occur mainly at the distribution level,
contributing to the expansion of DER and placing pressure in a
system that was designed with a static mindset [2], [4]. Besides
this, the volatile nature of loads and the large extension of
distribution networks compromise the efficient monitoring of
the network. Consequently, distribution system operators need
to adapt to this new situation to secure their services [2], [5].
Inevitably, it is required a more precise knowledge of the state
in distribution networks. However, obtaining greater accuracy
in SE becomes challenging as the available information is
mostly obtained from pseudo-measurements, measurements
with high variance [6]. In addition, placing a large number of
meters in the network is economically unsustainable. Under
these conditions, the meter placement problem needs to be
solved considering volatile loads and DER, low observability
and a restricted budget.

The meter placement problem was introduced by Schweppe
and Wildes [7]. In their seminal paper, the importance of
the covariance matrix of the state estimate was highlighted
for both SE and its possible use in the allocation of new

measurements. Later on, Monticelli and Wu [8] proposed a
meter placement algorithm whose objective was to achieve
observability in the network. This algorithm started by iden-
tifying the observable parts of the network, called observable
islands, through the factorization of the gain matrix. After-
wards, pseudo-measurements were used in order to merge all
observable islands into one.

More recently, new approaches have been proposed and
were mainly focused on distribution networks. Singh, Pal and
Vinter [9] aimed to decrease the relative errors in the voltage
and angle estimates at all buses of the network, which was
derived to be equivalent to reducing the error ellipse generated
by the covariance matrix of the state estimate. Chen et al. [10]
used a circuit representation model based on the gain matrix
to represent SE errors and a disjunctive model to exactly
relax and convert the meter placement problem from a mixed
integer nonlinear programming (MINLP) problem into a MILP
problem. Furthermore, some papers focused on addressing the
meter placement problem in active distribution networks [11],
[12]. These approaches relied on the use of heuristics to obtain
the desired meter placement solution, specifically a genetic
algorithm and a binary particle swarm optimization method.

This paper addresses the meter placement problem in distri-
bution networks under low observability, mitigating the impact
of load and DER volatility in meter placement solutions. The
objective is to attain maximum accuracy in SE by providing a
compromise solution that prevents a significant increase in SE
errors. For this reason, the original MILP formulation by Chen
et al. [10] was extended so as to deal with the uncertainty
expressed by multiple scenarios of different load and DER
profiles. Each of these scenarios corresponds to the set of
power measurements obtained at each bus under a determined
time interval. Furthermore, each meter placement solution
comprises the allocation of a limited number of meters,
voltage magnitude measurements and/or current magnitude
measurements, with high accuracy.

This paper is organized as follows. Section II presents the
SE theory applied to this work and details the steps towards
the formulation of the MILP approach. Section III describes
the case study and the tests performed. In Section IV analysis
are drawn on the results obtained from the tests performed.
Finally, Section V summarizes the main conclusions of the
work.
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II. PROPOSED APPROACH

A. State Estimator
The state estimator considered in this approach is the

weighted least squares based on an AC network model. Hence,
the relation between the state variables and the measurements
can be defined as

z = h(x) + e (1)

where z is the measurement vector (m-vector); x is the state
vector (n-vector); h(.) is the measurement function, which
is a nonlinear vector function that relates measurements to
states (m-vector) and e is the the measurement error vector
(m-vector) [13], [14]. The measurement error considered has
zero mean, and the errors are assumed independent. From
these properties, the measurement error covariance matrix is
formulated as a diagonal matrix, where each diagonal element
is the variance associated with each measurement allocated.

Cov(e) = E[eeT ] = Rz = diag{σ2
1 , σ

2
2 , . . . , σ

2
m} (2)

Furthermore, once measurement errors are considered ran-
dom variables, the same assumption can be extended to the
measurements z. These variables can also be represented
according to a Gaussian distribution with a covariance matrix
identical to (2), but with mean h(x) [15].

To obtain the maximum likelihood estimate, the objective
function J(x)

J(x) =
[
z − h(x)

]T
R−1z

[
z − h(x)

]
(3)

is minimized
min
x
J(x) (4)

The first-order optimal condition of (4) is given by

g(x) =
∂J(x)

∂x
= 0⇔ −HT (x)R−1z

[
z − h(x)

]
= 0 (5)

where g(x) is the gradient of J(x) and H(x) is the Jacobian
matrix of the measurement function

H(x) =
∂h(x)

∂x
(6)

The gradient obtained in (5) is a nonlinear function and,
consequently, in order to obtain a solution it is necessary to
use an iterative method. For this reason, Newton’s method is
used to solve g(x) = 0. After applying the Taylor expansion
to g(x),

g(x) = g(xk) + G(x)(x− xk) + · · · = 0 (7)

where G(x) is referred to as the gain matrix. This Hessian
matrix of the objective function can be expressed as

G(x) =
∂2J(x)

∂x2
= HT (x)R−1z H(x) (8)

after ignoring the second derivative terms. Finally, after dis-
regarding higher order terms of (7) and using (5), an iterative
solution can be found

G(x)∆xk = HT (x)R−1z

[
z − h(x)

]
∆xk = xk+1 − xk

(9)

to solve SE [13]–[15].

B. Circuit Representation of the Gain Matrix

The gain matrix is a key element in meter placement. It
reflects both the type, accuracy and location of the measure-
ments placed in a system. In addition, according to Schweppe
and Wildes [7] its inverse matrix

Rx̂ = G−1 (10)

can be interpreted as a measure of accuracy of the state
estimate

Rx̂ = E{(x− x̂)(x− x̂)T } (11)

Accordingly, Rx̂ = (εij)n×n can be referred to as the covari-
ance matrix of the state estimate, as it provides information
about the accuracy which can be achieved at each bus with
the available measurements.

Furthermore, the gain matrix is a symmetric sparse matrix.
Consequently, its structure is similar to the admittance matrix
Y , which is characterized for its use to describe networks in
power systems. Chen et al. [10] used this fact to represent
SE errors through a circuit representation model of the gain
matrix

G =

Nb∑
k=1

MkykM
T
k (12)

where Mk is a vector that represents the location of each ad-
mittance yk, and Nb is the number of branches. The reasoning
used to obtain the admittances from matrix Y is also used for
the gain matrix ySAi =

n∑
j=1

Gij

yBAij = −Gij
(13)

where ySAi is the shunt admittance of bus i and yBAij is the
branch admittance between buses i and j.

The only remaining issue to complete the circuit represen-
tation is to know how to compute the elements of the gain
matrix. For this reason, (8) can be used in a summation form
expressed as

Gij =

m∑
k=1

hkihkj
σ2
k

(14)

where k is the measurement index; i, j are the indices of each
element of the gain matrix and hki and hkj are the individual
elements of H , i.e. represent partial derivatives with respect
to only one state variable, as in

hki =
∂hk
∂xi

(15)

By combining (13) and (14) and considering the contribu-
tion of a single measurement k, the admittances of the gain
matrix can be computed through

ySAk,i = hki

σ2
k

n∑
j=1

hkj

yBAk,ij = −hkihkj

σ2
k

(16)
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In this paper as in [10], it is assumed that the state vector
x is composed by the set of bus voltage magnitudes of the
network

x = [V1, V2, ..., Vn]T (17)

Furthermore, it is assumed that network branches follow the
general two-port π model with negligible shunt admittances,
as in Fig. 1

Figure 1. Two-port π model network branch with negligible shunt admit-
tances.

where gij and bij are, respectively, the conductance and the
susceptance of the network branch. Based on this assumption,
the available measurements used in this paper are listed in
Table I,

Table I
AVAILABLE MEASUREMENTS

Type of measurement Expression

Real power injection at
bus i, Pi

Vi
∑
j∈ℵi

Vj(Gijcosθij +Bijsinθij)

Reactive power injection
at bus i, Qi

Vi
∑
j∈ℵi

Vj(Gijsinθij −Bijcosθij)

Line current Flow
magnitude from bus i to
bus j, Iij

√
(g2ij + b2ij)(V

2
i + V 2

j − 2ViVjcosθij)

Voltage magnitude at bus
i, Vi

Vi

where θij = θi−θj ; G and B are in this context, respectively,
the real and imaginary matrices of the admittance matrix Y
and ℵi is the set of all consecutive buses to bus i [13].

From Table I, it is possible to derive the expressions
that determine the elements of the measurement Jacobian
matrix H . It is important to note that when considering a
distribution network, θij ' 0. This simplification can be
used to obtain the admittances of the measurements intended
for allocation. However, when measurements are not being
allocated as admittances, θij ' 0 is not considered and the
formulation presented in Table I is adopted. The reasoning
is to obtain the most precise solution whenever full detail is
possible, specifically when using either real and reactive power
injection measurements.

When considering a voltage magnitude meter at bus i,
hk = xi = Vi. Based on that and according to (15){

hki = ∂hk

∂xi
= ∂Vi

∂Vi
= 1

hkj = ∂hk

∂xj
= ∂Vi

∂Vj
= 0

(18)

Following that, from (16) comes that{
ySAk,i = 1

σ2
k

yBAk,ij = 0
(19)

As a result, when a meter of this type is allocated at bus i,
the only resulting admittance is a shunt admittance, i.e. an
admittance which connects bus i to the ground. It is also
important to point out that its value only depends on the
accuracy of the meter, through σ2

k. Furthermore, the associated
position of the admittance is represented by Mk, which is a
zero vector, except on the index of the bus where the meter is
placed, which has the value 1.

On the contrary, when considering a current magnitude
meter between two consecutive buses i and j and a non-
consecutive bus l comes that

hki =
∂Iij
∂Vi

=
√
g2ij + b2ij

hkj =
∂Iij
∂Vj

= −
√
g2ij + b2ij

hkl =
∂Iij
∂Vl

= 0

(20)

and consequently 
ySAk,i = 0

yBAk,ij =
g2ij+b

2
ij

σ2
k

yBAk,il = yBAk,jl = 0

(21)

In this case, the resulting admittance is not a shunt admittance
but instead a branch admittance. Moreover, its value does not
only depend on the accuracy of the measurement placed but
also on the values of the parameters of the corresponding
branch. The associated position of the admittance comes from
Mk, which is a zero vector except on the indices of the buses
that connect the branch where the meter is placed. In this
vector, one of these indices has the value 1 and the other the
value −1.

It is also worth mentioning the elements of H related with
the real power injectionshki = ∂Pi

∂Vi
= 2ViGii +

∑
j∈ℵi

Vj(Gijcosθij +Bijsinθij)

hkj = ∂Pi

∂Vj
= Vi(Gijcosθij +Bijsinθij)

(22)
and reactive power injectionshki = ∂Qi

∂Vi
= −2ViBii +

∑
j∈ℵi

Vj(Gijsinθij −Bijcosθij)

hkj = ∂Qi

∂Vj
= Vi(Gijsinθij −Bijcosθij)

(23)
as they comprise the set of pseudo-measurements available in
this study.

C. MILP Formulation

The objective of this optimal meter placement method is
to find the optimal location for meters in order to minimize
the SE standard error at each bus. This information can be
understood to be in the diagonal elements of the covariance
matrix of the state estimate. Consequently, the performance
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index, which shall be referred to as error index, can be
expressed as a linear combination of the diagonal elements
of Rx̂. However, this matrix only refers to the SE accuracy
obtained under one load level. If one is to consider multiple
load levels and wishes to get a meter configuration that obtains
the best SE accuracy when applied to all scenarios considered,
it is necessary to consider all the corresponding Rx̂ matrices.
Accordingly, the error index can be formulated as

min

nNs∑
i=1

εii (24)

where Ns corresponds to the number of scenarios considered.
Each of these scenarios corresponds to the set of power
measurements obtained at each bus under a determined time
interval. Fig. 2 illustrates a possible procedure for generating
scenarios from a set of n bus load profiles by sampling in
time.

Figure 2. Illustration of a possible procedure for generating scenarios from
a set of n bus load and DER profiles. Each scenario is generated by selecting
the active power measurement of each bus in a given time instant.

With sampling, one can accurately represent uncertainty
without weighting the likelihood of scenarios. For other
possible approaches to scenario generation, when weighting
is required, the summation in (24) may be changed into a
weighted sum of errors.

The elements of each covariance matrix of the state estimate
can be obtained through (10). However, this operation is non-
linear and threatens the formulation of the problem in a MILP
format. The solution to this issue comes from decomposing
the gain matrix into two parts

G = G0 +

Ncand∑
k=1

MkbkykM
T
k (25)

The first part, G0, corresponds to the gain matrix obtained
from the initial configuration of measurements already allo-
cated in the network. The second represents a summation of
gain matrices. Each gain matrix is computed based on the
allocation, in the network, of only one of the total amount

of meters that can be allocated, Ncand. This second part
is formulated similarly to (14). The sole difference is the
introduction of the decision variable bk. This decision variable
refers to the allocation or not of meter k. Since the meters that
are to be allocated are voltage magnitude meters and current
magnitude meters, the decision vector b can be separated into
two

b = [bvol bcur]T (26)

These vectors bvol and bcur store the decision of allocation,
bk = 1, or not, bk = 0 for each meter. In the case of voltage
meters at each bus, while in the case of current meters at
each branch. From the decomposition of the gain matrix it is
possible to combine both (10) and (25) into one

G0Rx̂ +

Ncand∑
k=1

MkbkykM
T
k Rx̂ = I (27)

At this point, (27) is nonlinear, and it is still not possible
to formulate the optimal meter placement problem as a MILP.
However, it is possible to define an instrumental vector zk to
deal with the nonlinear nature of the equation

zk = bkykM
T
k Rx̂ , k = 1, 2, . . .m (28)

The purpose of this vector is to select the nonlinear part of the
equation in order to apply the disjunctive model proposed by
Bahiense et al. [16]. According to this model, the multiplica-
tion of decision variables in (28) disappears, and this equation
is replaced by a linear relaxation

−L(1− bk)1 ≤ zk − ykMT
k Rx̂ ≤ L(1− bk)1 (29)

where L is a large number and 1 = [1 1 . . . 1]. Nevertheless,
this inequality does not ensure that when bk = 0, the resulting
gain matrix associated with measurement k is a zero matrix.
For this reason, another inequality is needed

−Lbk1 ≤ zk ≤ Lbk1 (30)

The joint effort of both (29) and (30) leads to the intended
result without any nonlinearities involved. When there is no
allocation bk = 0, and consequently zk = 0. On the contrary,
when there is allocation bk = 1 and zk = ykM

T
k Rx̂.

This formulation also takes into account the maximum
amount of meters intended to employ with two new constraints
that can be added to the problem

n∑
i=1

bvoli ≤ Nvol
new ,

Nb∑
i=1

bcuri ≤ N cur
new (31)

where Nvol
new and N cur

new are, respectively, the maximum amount
of voltage and current magnitude meters that can be allocated.

Additionally, a cost can be associated with each meter
allocation

CT b ≤ ctotal (32)

where C is a vector with the costs of allocating each meter
and ctotal is the maximum amount to spend in the allocation
of meters.
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A new constraint is also introduced such that it is possible
to define the initial position of the meters intended to allocate

AT b = atotal (33)

where A is a zero vector filled with ones in the positions
where the meters are to be allocated. Accordingly, atotal is
the result of the sum of the elements of A.

The final MILP formulation can be expressed as

minimize
nNs∑
i=1

εii

subject to G01Rx̂1
+

Ncand∑
k=1

MkbkykM
T
k Rx̂1

= I

− L(1− bk)1 ≤ zk − ykMT
k Rx̂1

≤ L(1− bk)1

...

G0Ns
Rx̂Ns

+
Ncand∑
k=1

MkbkykM
T
k Rx̂Ns

= I

− L(1− bk)1 ≤ zk − ykMT
k Rx̂Ns

≤ L(1− bk)1

− Lbk1 ≤ zk ≤ Lbk1
n∑
i=1

bvoli ≤ Nvol
new

Nb∑
i=1

bcuri ≤ N cur
new

CT b ≤ ctotal
AT b = atotal

(34)
The final decision variables are the elements of all matrices
Rx̂, the elements of the instrumental vectors zk and the
elements of b.

This formulation allows obtaining meter placement solu-
tions that take into account not only one scenario but Ns, ex-
tending the MILP formulation presented by Chen et al. [10].
By allowing the use of Ns scenarios instead of one, it is
now possible to obtain a compromise meter placement solution
that is capable of dealing with load and DER volatility. This
solution is defined as a compromise solution, as it may not
be the optimal meter solution for every single or even any
scenario individually, but instead for the whole set of possible
scenarios considered.

III. CASE STUDY

The case study presented in this paper is a radial 9 bus test
feeder. The line model follows the same structure as presented
in Fig. 1 and the branch admittance is 0.01 + j0.01 p.u. It is
also considered that all feeder buses, except the first, have
active and reactive power injections. The measurements asso-
ciated with these power injections are considered to be pseudo-
measurements with 50% standard deviation. Furthermore, it is
already placed a current magnitude meter between buses 1 and
2 with 1% standard deviation.

Figure 3. Nine bus test feeder.

In this paper three distinct loading situations are addressed.
The first situation comprises two distinct scenarios that differ
in the presence of DER. The first scenario describes a scenario
without the presence of DER, in which all buses with loads
have injected power equal to −0.22− j0.022 p.u.. On the
contrary, the second scenario describes a situation with the
presence of DER, where the sole difference is the injected
power at the fifth bus, which is equal to 0.88 + j0.088 p.u..

The remaining situations are composed of twenty four
scenarios and intend to reflect an evolution in the integration
of DER. The second situation represents the current reality of
distribution networks where there is still low DER integration,
and consequently, there is low load and DER volatility. This
situation compresses ninety six individual meter readings of
real and reactive power injections from a single day for each
bus into twenty four scenarios. This compression uses the
average of each four meter readings to scale down the number
of scenarios. In this situation only bus 5 has DER. For this bus,
the reactive power is assumed to be 10% of the corresponding
active power. The third situation assumes that all buses, except
the first, can have allocated DER. Consequently, the volatility
associated with this situation is higher than in the previous. In
this case, real power injections at each node follow a uniform
distribution with bounds − 1 p.u. and 1 p.u.. The reactive
power values are assumed to be 10% of the values obtained
for the real power.

The aim of the tests performed is to assess the advantages
of the use of a compromise meter configuration in comparison
with the optimal meter configurations of each individual sce-
nario. Tests comprise the allocation of one voltage magnitude
meter and one current magnitude meter, both with 1% standard
error, to both individual scenarios and the whole set of
scenarios of each situation. The allocation cost at any bus
or branch is considered to be the same. These meters are
allocated according to the solution obtained from the MILP
formulation (34) using MATLAB’s Optimization Toolbox.

IV. RESULTS AND DISCUSSION

A. Situation with Two Distinct Scenarios

Regarding the scenario without the presence of DER, the
meter placement solution is presented in Fig. 4.

Figure 4. Optimal meter configuration considering the scenario without DER.
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Besides the current magnitude meter already in place, there
was the allocation of a voltage magnitude meter at bus 8 and
a current magnitude meter between buses 7 and 8. The error
index obtained for this meter configuration is 0.0009 p.u.

On the contrary, in regard to the scenario where there is the
presence of DER, the meter placement solution is presented
in Fig. 5.

Figure 5. Optimal meter configuration considering the scenario with DER.

In this case, a voltage magnitude meter was added in bus 4,
and a current magnitude meter was placed between buses 5
and 6. The error index obtained for this meter configuration
is 0.0018 p.u.

The optimal meter configuration that takes into account both
scenarios with and without DER is presented in Fig. 6

Figure 6. Optimal meter configuration considering both scenarios with and
without DER.

where the voltage magnitude meter was allocated at bus 7,
and the current magnitude meter was placed between buses 5
and 6.

The optimality that was previously ensured for the meter
configurations that dealt with one scenario only is now also
ensured by the compromise meter solution, as presented in
Fig. 7.

Figure 7. Contour plot of the error index considering both scenarios with and
without DER. The best possible configuration that considers both scenarios
has a voltage meter at bus 7 and a current meter at branch 5. This branch
corresponds to the branch between buses 5 and 6.

The result obtained and presented in Fig. 7 sustains the fact
that the compromise meter solution remains as its counterparts
a globally optimal solution.

After obtaining the three optimal meter configurations, each
configuration was assessed under each scenario individually.
The resulting error indices are presented in Table II.

Table II
ERROR INDEX COMPARISON BETWEEN EACH CONFIGURATION

Scenario Error Index (pu)
Without DER With DER

C
on

fig
ur

at
io

ns Without DER (Fig. 4) 0.0009 0.0037

With DER (Fig. 5) 0.0015 0.0018

Compromise (Fig. 6) 0.0011 0.0019

As anticipated and according to Table II, the configuration
that has the lowest error index for a determined scenario is the
configuration specifically designed for that scenario. In both
scenarios, the remaining configurations present a worse error
index and, consequently, a worse SE accuracy. However, the
results obtained with the compromise meter solution stand out
in each scenario, specifically when comparing to the other con-
figuration that was not designed for the scenario considered.
In fact, the increase in the error index is significantly lower
when using the compromise meter solution rather than when
using the configuration that was not designed for that scenario.
This is an important result, as this is verified not only on the
scenario without DER but also on the scenario with DER.
Thus, these results support the use of a compromise meter
solution when dealing with load and DER volatility as it can
be further verified through Fig. 8.

Figure 8. Comparison between error index variations obtained for different
optimal meter solutions. Error variations are referred to the error index found
for the optimal meter configuration of each scenario.

Further analysis on the effectiveness of the choice of the
compromise solution can be obtained through the comparison
of the SE standard error at each bus. This comparison for the
scenario without DER is presented in Fig. 9.
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Figure 9. Comparison between the SE standard error at each bus obtained
for each configuration under the scenario without DER.

From Fig. 9, some conclusions can be drawn regarding
the performance comparison between meter configurations
and regarding the performance of each meter configuration
individually. When comparing performances between meter
configurations, it is noticeable that on average, the configu-
ration that was designed for this scenario has the best SE
accuracy. On the contrary, the configuration designed for the
scenario with DER has, on average, the worst SE accuracy.
The SE accuracy of the compromise solution tends to stay
in between the two other configurations, as intended. It is
also important to notice that these conclusions are for the
average and not for the individual SE of each bus. In fact, in
some cases such as when considering bus 4, the configuration
for the scenario with DER has a better SE accuracy than
the configuration without DER. This happens because in the
configuration with DER there is a voltage magnitude meter
placed at bus 4 and the meters used are allocated until bus 6.

The comparison of the SE standard error at each bus con-
sidering the scenario with DER is presented next in Fig. 10.

Figure 10. Comparison between the SE standard error at each bus obtained
for each configuration under the scenario with DER.

From Fig. 10, it is possible to understand the reason
behind the less effective performance of the configuration
with DER in the previous scenario, based on the performance
of the configuration without DER in this scenario. In fact,

the configuration without DER has a significantly worse SE
accuracy at the beginning of the feeder, as it does not take into
account the effect of the presence of DER. Furthermore, as
intended, the compromise solution remains with a reasonable
performance.

B. Situations with Twenty Four Distinct Scenarios

The second situation represents a situation with low integra-
tion of DER, and consequently, with low net-load volatility.
The compromise meter configuration for the twenty four
scenarios considered is presented in Fig. 11.

Figure 11. Compromise optimal meter configuration. The set of scenarios
considered is from the second situation.

Optimal meter configurations were also obtained for each
of the twenty four individual scenarios. From the set of
configurations obtained, there were only two distinct solutions.
One of these configurations not only was equal to the com-
promise solution but was also chosen by the largest amount
of scenarios, about 54%, as their optimal meter configuration.
Following this, configurations are compared based on their
performance when applied to the whole set of scenarios as
presented in Fig. 12.

Figure 12. Comparison of the error index variation between twenty four
meter configurations when each configuration is applied to the whole set of
scenarios of the second situation. Error index variations are referred to the
error index found for the compromise meter solution.

In this situation, it is shown that the impact of preferring the
use of a compromise meter solution rather than an individual
optimal solution is small. The reason for this low increase in
the error index variation is that in this situation, there is low
load and DER volatility at each bus. This low volatility, in
turn, translates into a situation where there is low diversity
in the choice of optimal meter configurations for each sce-
nario and the impact of choosing distinct individual optimal
configurations is not significant.
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The previous situation can be further extended considering
that all buses, except the first, can have DER. The immediate
result is a substantial increase in load and DER volatility of
the network. The compromise solution for the whole set of
scenarios is presented in Fig. 13.

Figure 13. Compromise optimal meter configuration. The set of scenarios
considered is from the third situation.

From these scenarios, eleven distinct configurations were
found. One of these configurations corresponds to the com-
promise meter configuration, which, in this case, was only
chosen by about 8% of the scenarios as their optimal meter
configuration. The corresponding comparison of performance
between meter configurations when applied to the whole set
of scenarios is presented in Fig. 14.

Figure 14. Comparison of the error index variation between twenty four
meter configurations when each configuration is applied to the whole set of
scenarios of the third situation. Error index variations are referred to the error
index found for the compromise meter solution.

It is important to point out that the increased volatility
in this situation had a severe impact on the increase of the
error index variation of the individual meter configurations,
specifically when comparing with the previous situation. This
shows why is it not enough to optimally choose the optimal
meter configuration for one scenario and apply to the rest, but
instead it is necessary to take into account the set of scenarios
in study to mitigate the impact of net-load volatility on SE
accuracy.

V. CONCLUSION

This paper proposes a MILP approach for meter placement
in low observability distribution networks. The objective of
this approach is to minimize the SE standard error at all
buses. For that reason, a limited amount of meters is optimally
allocated in such a way that is able to mitigate the impact of
net-load volatility on SE accuracy. To deal with this volatility,

this approach is able to provide an optimal meter configuration
based on multiple scenarios representative of different load and
DER profiles. This configuration is referred as the compromise
meter configuration.

The results obtained show that, if one is to consider only
one scenario for obtaining the meter solution, when faced
with a distinct scenario, the SE standard error can become
significant. Furthermore, the results also show that a com-
promise meter configuration can be found to efficiently deal
with scenario variations, mitigating the effects on SE accuracy
of the intrinsic volatility of distribution networks loads and
DER. Finally, results also indicate that compromise meter
configurations will play a key role in enhancing SE accuracy
of future distribution networks with high DER penetration and
high net-load volatility.
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