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Abstract—Resilience in our electrical grid is imperative to
the well being of society after events such as natural disas-
ters or cyber attacks. To justify the development of resilience
improvements in the grid, metrics are needed to quantify the
improvement and cost benefit. These resilience metrics need
to consider the inherent uncertainty in the grid, which arise
from elements such as variable load and generation. This paper
presents a method to include uncertainty in the proposed re-
silience framework. The resilience framework is demonstrated on
a 2,000-bus synthetic grid with a transient contingency simulated
as a hurricane type event with numerous line outages. Varying
amounts of distributed energy resources (DERs) at 0%, 10%,
20%, and 50% of load amount are included in the system and
assessed for their system resilience impact and cost-benefit with
and without uncertainty evaluated using Monte Carlo simulation.

Index Terms—Power systems, Power system dynamics, Re-
silience, Uncertainty, adaptive capacity

I. INTRODUCTION

The ability of a power system to resist, respond, and recover
from a catastrophic event are key factors commonly used to
define the resilience of the power system. Resilience is often
described in reference to low probability, high impact events.
These types of events can be caused by environmental threats
and human threats, such as cybersecurity attacks. The occur-
rence of extreme weather due to climate change has increased
the frequency and duration of power outages in the United
States between 2002 and 2012 [1]. Typical environmental
threats that put the electrical grid at risk include hurricanes,
winter storms, floods, wildfires, and earthquakes [2]. Weather-
related electrical outages have cost the U.S. economy between
$20 billion to $55 billion annually [3]. Human threats from
cyber attacks are also emerging and have shown a source
vulnerability in the electrical grid [4], [5]. The cyber attack
on Ukraine’s electrical grid caused power outages for approx-
imately 225,000 customers [6]. There is a need to enhance the
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electrical power grid’s resilience by hardening it against these
threats as they become more prevalent [7].

Numerous resilience based improvements have been sug-
gested including: microgrids [8]–[10], improved dispatch and
scheduling of resources [11]–[13], flexible local resources
(such as generation, load, and energy storage) [14], [15],
and optimal switch placement [16]. The key to widespread
implementation of such resilience-focused improvements will
be the adoption of an established set of resilience metrics that
quantify the resilience value and cost-benefit. The quantifi-
cation of resilience in power systems is an emerging field,
with several proposed resilience metrics, such as the resilience
triangle and trapezoid [17], [18]. However there is not a
consensus on an established set of resilience metrics and
existing reliability based metrics are not sufficient for valuing
resilience.

The work in [19] provides extensive review of resilience
metrics for power systems and proposes a resilience metric
framework and notes few proposed metrics follow a utility-
centric view of power systems. The proposed resilience met-
ric framework bases its metrics on the U.S. Presidential
Policy Directive 21 [20] which defines resilience on four
components: withstanding capability, recovery speed, prepara-
tion/planning capacity, and adaptation capability. These met-
rics quantify the variables necessary to describe the four
components, however a metric to describe the overall re-
silience of the system is missing. Further review is performed
in [21], which makes an important differentiation between
reliability and resilience. This work notes reliability metrics
are inadequate to quantify resilience due to their inability to
address topological flexibility, identifying critical infrastruc-
ture, cooperation with customers, and potential preventative
measure evaluation. Valuable contributions are made in [22]
providing insight and classification of resilience in power
systems and highlighting the need for cost-benefit studies of
proposed resiliency improvements.

Perhaps the most accepted and well known metric for
electrical grid resilience is the resilience trapezoid proposed
in [23], which is pictured in Figure 1. This builds on the
works in [24]–[27] and applies the framework to power
systems. The resilience trapezoid assesses the resilience of
the system through three phases, the disturbance progress,
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the post-disturbance degraded state, and the restorative state.
The resilience trapezoid is an extension of the resilience
triangle, proposed in [17], which only accounts for the first
phase. Further use of the resilience trapezoid is performed
in [18], to show how the impact of improvements made in
specific resilience phases affect the overall resilience on the
system. Another important contribution to resilience metrics
is the severity risk index introduced in [28]. This incorporates
probability of event and impact as a method evaluate resilience
risk. However, this work does not include a cost-benefit
analysis.

Fig. 1. Resilience Trapezoid [23]

Another proposed set of resilience metrics are from the
controls systems perspective in [29]. The metrics from [29]
are illustrated in Figure 2. In this work the metrics are not
applied towards power systems however they add an important
contribution, the resilience threshold, to the resilience frame-
work. There can be considerable overlap between reliability
and resilience, and reliability metrics can be used to evaluate
resilience type events. However, a difference between where
resilience and reliability metrics are applied is often the
magnitude and predictability of a disturbance, where resilience
encompasses well beyond N-1 due to unpredictability of events
and potential for uncertain N-k types of contingencies. With
resilience it can be assumed that there is a certain threshold of
degradation that might not be possible to prevent. Instead, the
focus is on minimizing the degradation and recovering quickly.
The resilience threshold marks the maximum acceptable level
of degradation due to a catastrophic event. This level could
relate to total loss of load in the system or retained critical
loads. Similar to the resilience threshold, [22] identifies a
permissible range.

In [30], [31], the metrics of adaptive capacity and insuf-
ficiency from [29] are applied to power systems. Adaptive
capacity of the system is provided as a manifold describing
the available active and reactive power at a node which could
be injected if necessary in response to a disturbance. However,
the adaptive capacity through the resilience phases of an event
is not shown and the resilience threshold is not applied.

Unaccounted for in any of the proposed metrics is the
quantification of uncertainty in the system, versus uncertainty
of the event, and how that impacts the resilience metric.
There is inherent uncertainty in electrical grids, such as load

Fig. 2. Disturbance and Impact Resilience Evaluation Curve [29]

amounts and variable resource generation amounts. Extensive
work in reliability studies has been performed to quantify
the risk due to uncertainties in elements of the system, such
as wind generation [32], [33]. Similar to how quantification
of uncertainty from system elements has been applied to
reliability metrics, this uncertainty needs to be accounted for
in resilience metrics. A resilience metric should either quantify
the risk associated with the metric due to uncertainty or de-rate
the metric. Risk associated with uncertainty due to probability
of event, as previously mentioned, was introduced in [28],
however this does not also account for uncertainty within
elements of the system.

This paper introduces a resilience metric framework and
methodology to compare resilience improvements, the cost-
benefit of improvements, and a method to de-rate the resilience
of the system due to uncertainty within its elements (e.g.,
DERs). This resilience framework incorporates the controls
systems resilience framework presented in [29] and the re-
silience trapezoid presented in [18]. Building from [18], the
area is used to compare improvements while accounting for
the resilience threshold. The main contribution of this paper
is the introduction of the framework, which proposes the use
of the resilience threshold and cost-benefit analysis for power
system resilience metrics.

The proposed framework is assessed by considering a
hurricane event that causes line outages across a 2,000-bus
synthetic grid overlaid on the region of the Electric Reliability
Council of Texas (ERCOT). With this case study we evaluate
the dynamic response of the system to create a more accurate
estimate of load loss in the system to the hurricane event. The
performance metric used to evaluate resilience performance
is energy not served, as area under the curve from load
loss. The resilience benefit of varying amounts of distributed
energy resources (DERs) additions to the system is tested, and
quantified using the proposed framework. Then, uncertainty
in the DERs generation amount is considered, and the de-
rating of the adaptive resilience due to this uncertainty is
demonstrated.

The remainder of the paper is organized as follows. Section
II presents the proposed resilience metrics and methodologies.
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In Section III, a case study is performed of a high impact
event to demonstrate the use of the metrics and methodologies.
The paper concludes with Section IV which explains the key
takeaways along with the authors’ ideas for improvements to
the proposed framework and for resilience metrics for power
systems in general.

II. RESILIENCE FRAMEWORK METRICS AND
METHODOLOGIES

The resilience framework integrates the resilience trapezoid
framework based in power systems applications from [23] and
the resilience control system framework from [29]. The benefit
of incorporating the controls system perspective is to introduce
the concepts of the resilience threshold, minimal normalcy,
adaptive capacity, and adaptive insufficiency. These control
systems concepts introduce vocabulary that enable resilience
assessments in power systems to incorporate the effects of
communication and network architectures related to smart grid
advances and cybersecurity. These concepts are outlined below
[29]:

• Minimum Normalcy: The minimum acceptable operation
capacity of the system.

• Resilience Threshold: The level of operation set by min-
imum normalcy.

• Adaptive Capacity: The ability of the system to adapt or
transform from impact and maintain minimum normalcy.

• Adaptive Insufficiency: The inability of the system to
adapt or transform from impact, indicating an unaccept-
able performance loss due to the disturbance.

The key to these concepts is the resilience threshold. In high
impact events it can be assumed that there will be some system
degradation. The resilience threshold marks the maximum
acceptable level of degradation. The performance metric used
to set this threshold in power systems could be amount of load
loss, retention of critical loads (such as hospital and emergency
response), available spinning reserves, frequency nadir or other
regulatory requirements. The classification of the resilience
trapezoid, the three phases of an event, and the components
that describe and quantify those phases are applied from [23].
The three phases of the event are disturbance progress, post-
disturbance degraded state, and restorative state. These per-
spectives are combined to establish the resilience framework
as illustrated in Figure 3. The times outlined in the framework
illustration denote: td start of the disturbance phase, tpd start
of the post-disturbance phase, tr start of the restorative phase,
and tpr start of the post-restorative phase.

The resilience trapezoid shape is inverted in the proposed
framework, in comparison to the works it builds from, to
retain consistency with the evaluation performed in the case
study. The case study uses the performance metric of loss of
load, where the performance degradation increases with an
increase of loss of load. In Figure 3, two system responses
are shown. The un-resilient system response displays how the
system operation level exceeds the resilience threshold. The

Fig. 3. Resilience Framework

resilient system response conversely displays how the system
doesn’t exceed that threshold.

Using the framework outlined in Figure 3, the adaptive
resilience system metric is calculated from the area of the
trapezoid. There are two areas of the trapezoid with the
implementation of the resilience threshold. These areas are
the adaptive capacity area and the adaptive insufficiency area.
The adaptive insufficiency area is subtracted from the adaptive
capacity area to calculate the adaptive resilience of the system.
These areas are exhibited in Figure 4 and calculated in
Equation 1.

Fig. 4. Adaptive Resilience Metric

Adaptive System Resilience =

N∑
n=1

ts(T−On) (1)

The time is denoted by n, the length of the time step is ts,
the resilience threshold is T , and the operating level is denoted
by O. This area metric describes the adaptive resilience of a
system. Then the benefit of a change or improvement made
to the system can then be assessed by the change in the
adaptive resilience metric. The cost-benefit of such a change
or improvement to the system can be evaluated using:

Cost-Benefit =
Cost of System Degradation

Event Duration
− Cost of Change

Event Probability
(2)

where the event probability is provided in hours equal to
the number of hours in the number of years that the event
or scenario is expected to possibly occur. For example, an
assessed scenario simulating a “hundred year flood” would be
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expected to possibly occur in one hundred years. The event
probability would then be 100 times 8760 hours in a year,
to describe that the event is likely to happen once during a
876000 hour period of time. Putting the probability in hours
provides a common time step to compare event duration. The
event duration is also provided in hours, which is the number
of hours from td to tPr. The cost of change could be based
on incentives or payments for DERs, cost of transmission
upgrades, or cost of redispatch or scheduling of resources.
Examples of the cost of system degradation are energy not
served cost or regulatory fees. The cost-benefit is then given
in cost per hour. This allows for easy comparison of benefits
between changes to the system being consider for enhanced
system resilience. This simple cost-benefit method and metric
aims to address the need to assess cost-benefit and worth of
resilience improvements.

Uncertainty is another necessary element to consider when
implementing resilience metrics. Depending on the state of the
system at the beginning of an event, the system might be more
or less susceptible to instability which can have an impact on
the resilience of the system. Methods have been developed for
assessing the risk of event uncertainty on resilience in power
system [32]. This paper proposes a method to account for
system uncertainty in the resilience metric.

This method de-rates the resilience metric by the uncertainty
in the system from the elements of greatest concern or
variability. Examples of elements in the electrical grid with
great variability include variable resources such as solar and
wind generators, load amount, and DERs. The uncertainty due
to the chosen elements can be quantified by any sampling
method. Other appropriate uncertainty methods for use with
this framework include uncertainty sampling methods such
as probabilistic collocation or Latin Hypercube sampling.
From this quantification it is proposed to re-rate the adaptive
resilience system metric by calculating the metric from the
conservative 95% confidence interval. Figure 5 demonstrates
how the use of the 95% confidence interval will re-rate the
adaptive resilience metric.

Fig. 5. Adaptive Resilience Metric with Uncertainty

De-rating of the resilience metric due to uncertainty is a
necessary step for understanding the full impact of changes
aimed to improve the resilience of the system. This is espe-
cially important if control of variable resources or DERs is to
be considered as a resilience improvement to the system. The

effect that such uncertainty can have on the adaptive resilience
and cost-benefit is demonstrated in the case study.

III. CASE STUDY OF ADAPTIVE RESILIENCE METRICS

The adaptive resilience metrics and methodology presented
in Section II are demonstrated using a hurricane event that
causes line outages to a synthetic grid overlaid on the geo-
graphical footprint of Texas. The addition of varying amounts
of DER generation aimed at improving the resilience of the
system is considered. The adaptive resilience, cost-benefit, and
de-rated metrics due to uncertainty in the DER generation
amount are calculated for the original system and the system
with each of the changes listed.

A. Methodology

1) Test Case: The 2,000-bus synthetic grid power system
test case [34] is used to perform the simulations in this study.
This test case contains dynamic models for all the machines
so dynamic simulations can be performed. This test case was
enhanced to include basic underfrequency and undervoltage
protection relays on the generators and loads, and overcurrent
protection relays on the lines. This provides a simple but more
realistic load loss response to the event. An addition, wind
generation machine, governor, and exciter models are added
to the test case. The enhanced test case is publicly available
[35].

2) Event Simulation: The high impact event simulated in
the case study was of a theoretical hurricane passing through
the south eastern area of Texas. The hurricane results in several
line outages over the course of 30 seconds. The timeline of the
event is presented in Table I. The listed lines were chosen due
to their location in the “Coast” Area, and their loss causing
significant load loss. The line outages were simulated with a
three phase to ground fault followed by opening of both ends
six cycles after.

TABLE I
HURRICANE EVENT TIMELINE

Time (s) Line Outage
1 Line 7206 to 7294
1 Line 7294 to 7239
1 Line 7294 to 7405
4 Line 7204 to 7428
4 Line 7205 to 7073
6 Line 7263 to 7204
8 Line 7076 to 7422
9 Line 7105 to 7187
9 Line 7003 to 7264
9 Line 7105 to 7205

The degradation phase–Phase I–of the event was simulated
as a transient stability contingency in PowerWorld. The post-
disturbance and restorative phases–Phase II and Phase III–
were calculated using mean time to recover (MTTR) for the
load. The MTTR assumed for this case study was 100 MW
per hour. The amount of load loss found in the last time step
of the transient stability contingency simulation was used for
the first time step of Phase II. The amount of load loss in
Phases II and III are calculated at an hourly time step using the
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assumed MTTR. The results are separated in the steady state
response and the dynamic response. The dynamic response
covers the first 30 seconds. The steady state response assumes
zero load loss at the first time step, then the results from Phase
II and Phase III begin at the second time step. Both responses
are plotted to demonstrate the dynamic effects of the changes
to the system, and the long term impacts of those dynamic
effects.

This case study does not consider how the uncertainty
inherent within the event impacts the resilience metric as other
works have suggested methods for that assessment, instead it
considers the probability of such an event causing a specific
contingency. Adding uncertainty analysis in the event and
contingencies is a target of future work. It is also important to
note that determining the best cases and contingencies to study
for these theoretical high impact low probability events is
non-trivial and has significant impact on the resilience metric
results. However, it is out of the scope of this paper to discuss
or determine best methods for developing high impact low
probability events to simulate. Additionally, only the inclusion
of primary frequency response services are considered in this
study. The incorporation of secondary frequency response,
such as automatic generation control, would be beneficial for
demonstrating increased resilience, but is out of the scope
of this paper. However, tools such as Multi-Area Frequency
Response Integration Tool (MAFRIT) [36] could be used
to simulate both primary and secondary frequency response
together.

3) Metrics: The performance indicator of expected energy
not served (EENS) was used to evaluate the adaptive resilience
of the system. EENS is a commonly used reliability metric by
utilities. The use of this metric is to illustrate that already
established and used metrics, such as EENS, can be adapted
to provide meaning and value in terms of resilience [37].

The resilience threshold use in this case study is based on
the North American Electric Reliability Corporation (NERC)
standard BAL-002-0, disturbance control performance [38].
This standard states that as a minimum, the Balancing Au-
thority or Reserve Sharing Group shall carry at least enough
Contingency Reserve to cover the most severe single contin-
gency. Therefore, the resilience threshold in this case study
was set to the maximum amount of load loss from any
single contingency. The maximum amount of load loss from
any contingency was calculated from an N − 1 transient
contingency assessment of the original system that contained
all the protection relays for the generation, loads, and lines,
as to more accurately simulate load loss.

4) Resilience Improvements: The system is tested with
the addition of varying amount of DER generation. This
study includes the DER A model in PowerWorld to enable
simulation of DERs with trip settings and voltage support as
denoted in [39]. The DER generation amount is based on the
total amount of load, set to a percent of the total load. The
tested DER generation amounts as a percent of load are: 0%,
10%, 20%, and 50%. The inclusion of studying the resilience
impact of DER generation is due to the increased interest in

using DERs for improving power system stability, both for
voltage stability [40] and frequency stability [41], [42].

5) Uncertainty: The uncertainty quantification used in this
case study demonstration was performed using the Monte
Carlo sampling method. The DER amount was sampled from
0% to 10%, 0% to 20%, and from 0% to 50% of the load
amount at each load using a uniform distribution. A set of
500 simulations were run on PowerWorld for each uncertainty
range considered to gather data to calculate the mean, standard
deviation, and confidence intervals for each time step of
the simulations. The error of the confidence intervals was
calculated as in [43].

B. Results and Discussion

For ease of comparison the system with the specified
amounts of DER generation and the system evaluated under
different DER generation uncertainty ranges are here on re-
ferred to as the labels listed in Table II. The average error in
the calculated confidence intervals for steady state simulation
was 6.2% and for tranient simulation was 0.4%.

TABLE II
SYSTEM SCENARIO LABELS

Label System Scenario
A 0% DER generation
B 10% DER generation
C 20% DER generation
D 50% DER generation
E Uncertain DER generation ranging from 0-10%
F Uncertain DER generation ranging from 0-20%
G Uncertain DER generation ranging from 0-50%

The results from the hurricane event are first compared on
their dynamic responses. To demonstrate the effect of DER
generation on the system the load MW, bus frequency, load
voltage, and DER generation MW are compared for one load
in the system. Figure 6 presents the dynamic responses of Load
7432, which was chosen due to its proximity to the event and
the fact that the load did not trip off.

As the DER generation amount increases, there is a reduc-
tion in load loss. The 50% scenario has the lowest amount
of load loss. In this study, no re-dispatching of resources was
performed, which requires the slack bus to compensate for the
increase in DER generation. This increased stress on the slack
bus is perhaps the cause of the slightly increased voltage and
depressed frequency found with increases of DER generation.
In reality such an imbalance would only occur if there was a
sudden change, as the day ahead or real-time markets would
be based on forecasted load, which has embedded forecasts
for DER generation. It is likely that with re-dispatching of
resources based on optimal power flow that greater stability
and load retention would be realized. Therefore this study’s
benefits are conservative. This comparison of DER generation
amounts shows how penetration can affect load loss and
overall system instability during a high impact event. These
significant differences highlight the need to access uncertainty
in DER generation amounts due to the wide ranging results
shown in Figure 6. How these DER generation amounts affect
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Fig. 6. Dynamic responses of Load 7432 for Scenarios A, B, C, and D

(a)

(b)
Fig. 7. Total load loss from Scenarios A, B, C, and D. (a) is dynamic response,
(b) is steady-state response

the total load loss is shown for both the dynamic and steady
state response in Figure 7.

Due to the difference in starting load loss amount in the
steady state response, the overall load loss due to the entire
event decreases proportionally. Where the addition of DER
generation makes an impact on the resilience in the system
is in the reduction of degradation of the system in Phase I.
While this study focuses on how DER generation changes the
transient response which impacts the degradation phase of the

(a)

(b)
Fig. 8. Uncertainty Results with maximum DER penetration of 50% (a)
dynamic response (b) steady state response

event, other resilience gains are made in other phases as well.
An improvement on this study would be to evaluate how these
DERs could create increased impact in Phase II and Phase
III through the implementation of microgrids. Additionally,
other resilience improvement methods such as faster recovery
response could create impact in Phases II and III.

The effect of the DER generation uncertainty to the total
load loss for both dynamic and steady state responses are il-
lustrated in Figure 8 for system scenario G with an uncertainty
range or 0 to 50% DER generation. System scenarios E and
F resulted in similar responses, therefore system scenario G
responses are displayed as representative of all three scenarios.

For the adaptive resilience metric considering uncertainty,
the response of the lower 95% confidence interval is used
to calculate the metric. The response of the lower 95%
confidence bound is overall lower than the result of the 50%
DER generation seen in Figure 7. This is an expected but
an important result to note as this lower response implies
a lower adaptive resilience metric and lower cost-benefit,
which are shown and discussed below. This highlights the
need to consider uncertainty in test cases that include variable
elements. This is whether or not these elements are being
implemented as a method to improve resilience or already
exist as uncertain elements in the system, as the resilience
impact will be changed, and in this case lowered. Therefore
to perform accurate cost-benefit analysis to provide as a basis
for improved decision making, uncertainty in the variable
elements of the system needs to be considered.

The cost-benefit analysis for this case study is based on
EENS. Therefore the cost-benefit equation, Equation 2, is
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calculated with the following variables outlines in Equation
3.

Cost-Benefit =
(EENS)(Electricity Cost)

55 hours
−

(DER Sell Back Rate)*(DER MW amount)
(10 years) ∗ (8760 hr/yr)

(3)

We assume the event probability to be 10 years and the event
duration was simulated to be 55 hours with no improvements
made. The electricity cost is assumed to be 9 cents/kWh, and
the DER sell back rate is assumed to be 9.6 cents/kWh based
on Texas distribution utility prices and in this study assumed to
be constant. The inclusion of DERs in variable bulk electricity
markets could impact the cost benefit however is out of scope
for this study. The adaptive resilience metrics were calculated
for each of the scenarios. The EENS is calculated from the
simulations, and the DER amount is calculated as the specified
percentage of the total load. For scenario E, with uncertain
DER amount, the DER amount used for cost-benefit analysis
is 10% as that is the upper range of the uncertainty range
which would be the theoretical installed capacity of DER
generation. The actual DER generation could be anything
under the 10%. Similarly system scenarios F and G used 20%
and 50% respectfully for the DER amount used in cost-benefit
analysis. The adaptive resilience improvement metric is the
difference in the adaptive resilience metric from Scenario A
to the Scenario in question. The resilience framework metrics
are calculated from the steady state responses. The resulting
adaptive resilience metric results are reported in Table III.

TABLE III
ADAPTIVE RESILIENCE METRIC CASE STUDY RESULTS

System Adaptive
Resilience (MWh)

Resilience
Improvement (MWh)

Cost-Benefit
($/hr)

A -20397 - -
B 6858 27237 44562
C 43982 64361 105303
D 98157 11856 193930
E -16973 3406 5566
F -30516 -10137 -16603
G 18839 39218 64138

From the results in Table III, one can see that the greatest
cost-benefit is due to the highest amount of DER generation
tested, at the rate of $193,930 per hour. However, when
uncertainty in DER generation is considered the cost-benefit
drops to $64,138 per hour, seen in scenario G. In this study,
even when considering uncertainty across system scenarios E-
G, 50% still has the greatest cost-benefit. However it is seen
how that cost-benefit drops when compared to non-variable
DERS. Interestingly, scenario F has a lower resilience metric
than the original scenario A. It is possible that there is a certain
percentage of DERs within the range of 10-20% that causes
a larger amount of instability than the other ranges which
causes this drop in adaptive resilience. This points out the
need to consider and study the transient stability due to the
contingencies of a large event as the transient stability can
have lasting impacts in terms of long term resilience.

For other system improvements the uncertainty might high-
light an optimal amount of the variable resource that maxi-
mizes resilience and cost-benefit. Additionally, if a resilience
based improvement is being decided off a cost-benefit thresh-
old, adding the uncertainty could reduce the cost-benefit to
below that threshold making it no longer a viable option. All
these reasons highlight the need to incorporate uncertainty of
the variable elements of the system into the resilience metric
analysis.

From the results provided, the utility who owns this grid
could chose to incentivize or build out a specific amount of
DERs on the system, or make a certain amount of DERs
controllable for dispatch. The metric framework presented here
provides the resilience and cost-benefit justification for such
actions. This framework can be used by utilities to aid their
decision making process for future improvements and invest-
ments in their system as part of their planning process. The
cost-benefit of an improvement could be extrapolated across
several low probability high impact events, showing potential
increased cost-benefit when considering several events.

IV. CONCLUSION

This paper presents a resilience framework whose main
contributions are to provide a metric and assessment method to
account for uncertainty within elements of a power system and
to quantify cost-benefit of resilience-based improvements to
the system. We discuss the need to account for system uncer-
tainties and cost-benefit analysis in resilience assessments. We
demonstrate the proposed adaptive resilience metrics using a
case study simulating a hurricane event that causes line outages
across the southeast coast of Texas. A 2,000-bus synthetic grid
test case overlaid on the geographical footprint of ERCOT,
which included dynamic models for generators and protection
relays, was used to perform dynamic simulations of this event.
The addition of varying amounts of DER generation were
evaluated for their resilience benefit. The adaptive resilience
metrics were calculated for the seven system scenarios with
various amounts of DER generation, ranging from 0% to 50%
with cases considering uncertain DER generation from 0 and
up to 50% of the total load amount. It was shown how the
adaptive resilience metrics can be used to effectively de-rate
the resilience metric due to uncertainties, providing realistic
and conservative resilience metrics, and how the resilience
metric can be used to implement cost-benefit analysis. This
cost-benefit analysis is useful for comparing proposed im-
provement measures and assist in deciding whether or not to
invest in certain resiliency improvements of the system. Future
work to improve this resilience framework will include compu-
tationally faster uncertainty quantification methods, improved
event development methods, and the inclusion of co-simulation
of communication networks to model cyber attacks.
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