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Abstract—Equilibrium analysis is crucial in electricity market
designs, with Nash equilibrium recognized as the most powerful
one. Its most prominent hindrance, however, is an efficient
methodology to compute an equilibrium point in large-scale sys-
tems. In this work, a Column-and-Constraint Generation (CCG)
algorithm is proposed to tackle this challenge. More precisely,
the master problem finds a candidate for Nash equilibrium and
the oracle identifies whether this candidate point is indeed an
equilibrium. A set of numerical experiments was conducted,
comparing its computational performance with the solution of an
Equilibrium Problem with Equilibrium Constraint (EPEC). We
identify that the proposed algorithm overcomes the benchmark
in the magnitude of 20 times on average and more than 30 times
in the most demanding instances. Furthermore, the scalability
of the EPEC formulation is challenged even for medium-scale
instances, whilst the proposed algorithm was able to handle all
tested instances in a reasonable computational time.

Index Terms—Bi-level Programming; Column-and-Constraint
Generation (CCG); Equilibrium Problems with Equilibrium
Constraints (EPECs); Nash Equilibrium; Pool-Based Electricity
Markets.

NOMENCLATURE

For expository and didactic purposes, in this section, the
main sets, functions, and constants/variables used in this paper
are highlighted and appropriately described.

A. Sets

N Set of players competing in the pool-based electricity
market;

M(·) Set of optimal dispatch and respective uniform elec-
tricity price;

Qj Set of feasible quantity offers of player j ∈ N ;

B. Functions

Rj(·) Net revenue function of player j ∈ N in the pool-
based electricity market.
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C. Constants

cj Marginal production cost of player j ∈ N ;
d Inelastic demand;
qj Power capacity of player j ∈ N ;

D. Decision Variables

gj Dispatch of player j ∈ N in the pool-based electric-
ity market;

qj Quantity offered in the pool-based electricity market
by the player j ∈ N .

π Uniform electricity price.

I. INTRODUCTION

Most power systems worldwide have evolved in the last
decades towards the sedimentation of competitiveness in many
of their spheres (e.g., generation, transmission, and distribu-
tion), with supply competition being recognized as the most
mature among them [1], [2]. Its main structure comprises a
day-ahead pool-based marketplace, where Generation Compa-
nies (GENCOs) submit pairwise linked blocks of price and
quantity offers to a market operator that identifies both the
market-clearing electricity price and a day-ahead scheduled
production for each GENCO. Each competitor is then finan-
cially compensated by the respective electricity price for each
unit of production scheduled [3].

In this competitive context, several challenges of different
nature materialize both from the viewpoint of a particular
GENCO as well as from the perspective of the whole market
and regulatory stability. On the one hand, the income from
day-ahead electricity markets usually represents a significant
share of the total cash flow source of most GENCOs. As a
consequence, market participants should carefully adjust their
supply offer in order to extract from the market sufficient
amounts of income aiming at achieving secure levels of
financial stability. On the other hand, market regulators need
to continuously screen for market power evidence in order to
avoid significant unilateral influence on the market outcome,
ensuring thus high efficiency and social welfarism [4]. In this
context, equilibrium models, particularly Nash Equilibrium
ones, emerge as a powerful tool to support both GENCOs
and regulators. More precisely, such models attempt to mimic
the dynamics of the market, aiming at reflecting the rational
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behavior of all market participants. Therefore, regulators may
use this modeling framework to monitor market activities,
filtering singular strategic behavior; and GENCOs can refine
their offers following the Nash equilibrium solution [5]–[7].

Based on Non-Cooperative Game Theory, Nash equilibrium
is characterized by a set of feasible strategies (e.g., offers
in the pool-based market) such that neither competitor can
improve its outcome from the market by modifying its offer if
the remaining competitors “play” the equilibrium [8], [9]. As
a consequence, a Nash equilibrium point can be interpreted
as a market status from which no competitor has (unilateral)
incentives to deviate from. Although such market equilibrium
philosophy is extremely powerful, one of its main drawbacks
is its computational burden. Several approaches to deal this
problem have been studied in technical literature, but an
efficient method to compute equilibria in real-case applications
is still needed [10], [11].

The mathematical structure of typical electricity market
equilibrium problems belongs to the class of Multi-Leader-
Common-Follower games [12]. In this setting, the multi-
leaders represent the strategic offering model of each market
participant and the common-follower describes the market-
clearing process [13]. By exploring this modeling structure,
we convert the bi-level model into a large-scale single-level
equivalent optimization problem by making use of the Karush-
Kuhn-Tucker (KKT) optimally conditions of the common-
follower (market clearing) problem. The resulting large-scale
model can be interpreted as an Equilibrium Problem with
Equilibrium Constraints (EPEC) [14], suitable for the column-
and-constraint-generation (CCG) algorithm [15].

Therefore, in this work, we design a two-stage (master-
oracle) iterative CCG algorithm to efficiently compute Nash
equilibria in pool-based electricity markets. From an algorith-
mic viewpoint, such primal-based decomposition technique
has recently attracted considerably attention in technical lit-
erature due to its distinct computational performance and
capability of handling more general optimization structures.
In power systems applications, for instance, [16] adapt the
CCG technology to solve the proposed robust bidding in pool-
based electricity markets model. Additionally, [17] apply this
decomposition technique to handle the proposed energy and
reserve scheduling model and [18], [19] similarly make use
of this approach to tackle transmission expansion planning
models.

In our proposed CCG algorithm, at a given iteration, the
master problem finds a feasible offer for each GENCO (market
participant), candidate for an equilibrium point, and, then, an
oracle verifies if this (candidate) set of offers is indeed a
Nash equilibrium. If it is not an equilibrium, a primal cut
is introduced into the master problem removing the previous
solution from its feasible set. The procedure iterates until
a Nash equilibrium point is recovered. We highlight that
the proposed master-oracle-based solution approach aims at
iteratively recover a collection of feasible strategies for each
GENCO that encompass the umbrella-set of strategies suffi-
cient to recover the Nash equilibrium point. A salient feature

of our methodology is the flexibility to specify an objective
function to rank and select the best equilibrium point among
the many that might exist.

To validate the efficiency of our method, a set of numerical
experiments are performed and the computational time is
compared with the solution of a large-scale EPEC using an off-
the-shelf Mixed Integer Linear Programming (MILP) solver.
The proposed solution approach overcomes the benchmark
in the magnitude of 20 times on average and more than 30
times in the most demanding instances. The scalability of the
full EPEC formulation is challenged even for medium-scale
instances (i.e., by systems with more than 30 players), whilst
the proposed approach was able to handle all instances in a
reasonable computational time.

A. Objectives and Contributions Regarding Existing Literature

The main objective of this work is to devise an efficient
methodology to identify a Nash equilibrium in pool-based
electricity markets. For this purpose, a two-stage iterative
algorithm is designed based on the CCG techniques [15]. From
the perspective of computing Nash equilibria in pool-based
electricity markets, several methods can be found in technical
literature. For instance, [6], [7], [20] propose to solve the
large-scale EPEC using specialized algorithms and relaxations.
Additionally, by making use of the so-called Nikaido-Isoda
function [21], the authors in [22], [23] derived methodologies
to identify Nash-Cournot equilibria in hydrothermal electricity
markets. Finally, fixed-point-based algorithms, such as the
one described in [24], are also popular in this particular
application. Nevertheless, we argue that these methods may be
challenged to scale to real systems. In fact, on the one hand,
solve an EPEC involves handling a large-scale non-convex
optimization problem and, on the other hand, both the use of
Nikaido-Isoda functions and the fixed-point-based algorithms
are recognized to suffer from convergence difficulties. It is
worth mentioning that the methodology proposed in this
work tackles both issues by handling iteratively small-scale
non-convex optimization problems and also has convergence
guarantees.

II. POOL-BASED ELECTRICITY MARKETS

The financial pillar of most power systems around the globe
is supported by an auction-based market that feeds the sys-
tem’s physical operation. In this paper, we consider a market
comprised of a sealed-bid uniform-price auction for which
power producers submit a stack of pairwise linked price and
quantity offers. An inelastic demand is assumed and the market
clears at maximum social welfare. This price/quantity offer
stack represents the declared production cost that producers are
willing to sell their energy in the market, up to the respective
quantity offered. The market is cleared by solving a least-cost
supply/demand matching problem, indicating the amount of
energy each generator should produce and the market uniform
price. In this work, for expository purposes, we consider that
the strategic decisions are all concentrated on the amount of
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energy offered into the market, assuming that all players offer
their marginal costs as price offers1.

Formally, let n be the number of GENCOs competing in
the market. We assume that the set of feasible offers of each
player j ∈ N , {1, . . . , n} is a bounded subset of integers,
i.e.,

Qj =
{
qj ∈ Z

∣∣∣ 0 ≤ qj ≤ qj
}
, (1)

where qj stands for the amount of energy offered into the pool-
based electricity market and qj denotes the power capacity
of player j ∈ N . The market clearing design considered in
this work encompasses a single-period (one-step ahead) single-
node economic dispatch [3] as presented next.

min
gi

∑
i∈N

cigi (2)

subject to:∑
i∈N

gi = d; : π (3)

0 ≤ gi ≤ qi, :
(
β
i
, βi
)

∀ i ∈ N . (4)

Problem (2)–(4) is a linear and continuous mathematical
programming problem, which seeks for the most economical
dispatch g , (g1, . . . , gn) to meet an inelastic demand d with
c , {c1, . . . , cn} indicating the marginal production cost of
each player. The set of constraints in (4) assures that, for
each player j ∈ N , the quantity cleared in the market is
non-negative and upper-bounded by the respective maximum
offered amount qj . It worth to highlight that, although for each
player j ∈ N we assume an integer feasible offer set Qj , the
market-clearing dispatch g is a continuous variable, as usual in
most electricity markets [6], [7], [16]. To ease presentation, we
identify the Lagrange multipliers (π,β,β) of each constraint
after colons for future reference. We highlight that, following
the uniform-price-auction theory [25], multiplier π recovers
the price for electricity. Next, we outline the competitors
strategic behavior in the pool-based electricity market (2)–(4).

A. Strategic Behavior in Pool-Based Electricity Market

Typically, the main objective of economic agents is to
achieve high profit levels in the market they are competing
in by strategically adjusting their game plan. In the particular
context of this work, the GENCOs’ profit basically resumes to
the amount of power that is cleared in the market by the price
for electricity discounted by the respective marginal produc-
tion costs. Formally, for a given set of offers q , {q1, . . . , qn},
let M(q) to denote the set of optimal dispatch of each player
in the market and the respective uniform electricity price, i.e.,

M(q) ,
{

(g, π) ∈ Rn+ × R
∣∣∣ (g, π) solves (2)–(4)

}
. (5)

Then, the net revenue of a given player j ∈ N in the
pool-based electricity market can be written as the following

1This competitive representation is usually referred to as a Cournot Com-
petition and the respective equilibrium called Nash-Cournot Equilibrium [20].

Mathematical Program with Equilibrium Constraints (MPEC)
[13]:

Rj
(
qj , q−j

)
= max

g,π

{
(π − cj)gj

∣∣∣ (g, π) ∈M(q)
}
, (6)

where, following the game-theoretical standard notation, q−j
stands for the quantity offers from all GENCOs but company
j ∈ N . Although intuitive, the payoff function (6) cannot be
efficiently computed due to: (i) the non-representable format
of the optimal solution set (5); and (ii) the bilinear objective
function: (π − cj)gj . To tackle the first issue, recall that the
clearing problem (2)–(4) is linear and continuous. Thus, the
set of optimal solution points (5) can be exactly represented2

by the KKT system of the clearing problem:

M(q) =

{
(g, π) ∈ Rn+ × R

∣∣∣∣ ∃ (β,β) ∈ Rn+ × Rn+;

ci − π + βi − βi = 0, ∀ i ∈ N ; (7)∑
i∈N

gi = d; (8)

0 ≤ gi ≤ qi, ∀ i ∈ N ; (9)

βi
(
qi − gi

)
= 0, ∀ i ∈ N ; (10)

β
i
gi = 0, ∀ i ∈ N ;

}
. (11)

Secondly, in order to tackle the bilinear objective function
(π − cj)gj , we follow a similar procedure described in [28]
and [16]. For each player j ∈ N , we firstly multiply equation
(7) by gj , leading to:

(π − cj)gj = βjgj − βjgj , ∀ j ∈ N . (12)

Furthermore, by adapting equations (10) and (11) into (12), we
have that the bilinear objective function in (6) can be replaced,
for a given set of quantity offers q, by the following linear
equation:

(π − cj)gj = βjqj , ∀ j ∈ N . (13)

Finally, an undesired byproduct of the representation of
the optimality set through a KKT system is the need to
efficiently handle primal-dual complementarity conditions. Al-
though many techniques have been discussed in technical
literature to tackle this source of non-linearity, in this work,
we make use of standard Fortuny-Amat approach [29]. In this
context, the net revenue function (6) of a given player j ∈ N
can be re-written as the following MILP problem:

Rj
(
qj , q−j

)
= max
g,π,β,β,

η,η

βjqj (14)

subject to:

ci − π + βi − βi = 0, ∀ i ∈ N ; (15)∑
i∈N

gi = d; (16)

2We refer to [26] and [27] for the main properties and a wide discussion
regarding this representation.
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0 ≤ βi ≤M ηi, ∀ i ∈ N ; (17)

0 ≤ qi − gi ≤M
(
1− ηi

)
, ∀ i ∈ N ; (18)

0 ≤ β
i
≤M η

i
, ∀ i ∈ N ; (19)

0 ≤ gi ≤M
(
1− η

i

)
, ∀ i ∈ N ; (20)

ηi, ηi ∈ {0, 1}, ∀ i ∈ N . (21)

Problem (14)–(21) is a computationally tractable formula-
tion of (6), suitable for direct implementation on commercial
solvers. Equations (17)–(21) represent the Fortuny-Amat exact
representation of the non-linear set of constraints (9)–(11),
where M is a sufficient large number and (η,η) are binary
vectors determining the complementary statuses of primal
constraints and dual variables.

B. Nash Equilibrium in Pool-Based Electricity Markets

In the context of this work, a Nash equilibrium can be
roughly interpreted as a set of offers such that the net revenue
of each generation company j ∈ N at the equilibrium point
can not be improved if only company j deviates from this point
by choosing a different quantity offer. Formally, a sufficient
condition for a set of offers q(e) , (q

(e)
1 , . . . , q

(e)
n ) to be

characterized as a Nash equilibrium point is presented in (22).

Rj
(
q

(e)
j , q

(e)
−j
)
≥ Rj

(
qj , q

(e)
−j
)
, ∀ qj ∈ Qj , j ∈ N . (22)

Note that, to find an equilibrium point q(e), it is necessary to
solve a large-scale system of inequalities with a combinatorial
number of equations. This fact steams from the enumeration
of all feasible offers of each generation company j ∈ N in
the right-hand-side of (22). In technical literature, a typical
approach to computationally handle this combinatorial system
of inequalities is to embed it into an optimization framework
and make use of specialized algorithms to identify an equilib-
rium point [6], [7], [13]. For instance, we can co-optimize the
total net revenue of all GENCOs under the equilibrium point,
i.e., solve the following optimization problem:

max
q(e)

∑
j∈N

Rj
(
q

(e)
j , q

(e)
−j
)

(23)

subject to:

Rj
(
q

(e)
j , q

(e)
−j
)
≥ Rj

(
qj , q

(e)
−j
)
, ∀ qj ∈ Qj , j ∈ N ; (24)

q
(e)
j ∈ Qj , ∀ j ∈ N . (25)

Note that different objectives can be chosen, e.g., minimize the
spot price for electricity at equilibrium [6]. Regardless of this
choice, we highlight that solving the optimization problem is
still challenging, even for medium-sized systems. Therefore, to
tackle this issue, in the next section, we present a master-oracle
decomposition algorithm based on the column-and-constraint
generation framework [15]. The core of this approach is to
iteratively identify, for each generation company j ∈ N , a
subset Q̂j ⊂ Qj of offers such that the solution of (23)–(25)
with Q̂j in (24) ensures that (22) holds.

III. SOLUTION METHODOLOGY

Generally speaking, the main purpose of decomposition-
based algorithms is to iteratively recover important features
of the original (large-scale) problem, such that solving a
(potentially smaller) problem considering only these features
is sufficient to achieve optimality of the original problem.
In technical literature, one of the most popular structures of
this class of algorithms is based on constructing a so-called
master/oracle iterative process. More precisely, on the one
hand, the master problem is designed to identify a candidate
feasible solution, for instance, by solving a relaxed formulation
of the original problem; and, one the other hand, the oracle is
usually built to check if this candidate solution belongs indeed
to the optimality set of the original problem. If not, then a
feature of the original problem (usually referred to as cuts in
technical literature) is recovered and appended into the master
problem. The procedure thus iterates until convergence [30].

The solution methodology proposed in this work follows
this problem-decomposition iterative rationale. More specifi-
cally, at a given iteration k, the master problem is designed
to identify a candidate feasible point q(k). In the sequel, the
oracle identifies the best response of each GENCO j ∈ N to
its rival’s offer q(k)

−j and checks if the candidate point q(k) is,
in fact, a Nash equilibrium. If not, a primal cut is included into
the master problem and a new iteration resumes. In Figure 1,
an overview of the proposed CCG algorithm is presented and,
in the next two subsections, we carefully describe both the
master and oracle problems. For didactic purposes, we begin
with the oracle problem.

A. Oracle Problem

The main goal of the oracle problem in the proposed
algorithm is to verify if a candidate point q(k) is indeed a
Nash equilibrium. To achieve this purpose, for each player in
the market, we need to identify their best response against the
rivals’ strategy of playing the current candidate point. In other
words, for each generation company j ∈ N , we need to solve
the following optimization problem

q∗j ∈ arg max
qj∈Qj

{
Rj

(
qj , q

(k)
−j

)}
. (26)

If, for each GENCO j ∈ N , the respective net revenue on the
best response q∗j is not strictly higher than the value at the
candidate point, i.e., Rj

(
q∗j , q

(k)
−j
)
≤ Rj

(
q

(k)
j , q

(k)
−j
)
, than no

economic agent has incentive change its offer, configuring thus
a Nash equilibrium. In our particular context, solving (26) for
a given generation company j ∈ N is challenging due to the
bilinear objective function βjqj . To address this new source
of non-linearity, firstly recall that the feasible set of offers of
a given GENCO j ∈ N is assumed to be a bounded subset of
integers, which can be conveniently expressed by the following
binary expansion:

qj =

blog2(qj)c+1∑
l=1

2(l−1)γj,l ∈ [0, qj ], (27)
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Fig. 1. Overview of the proposed CCG algorithm.

with γj a binary vector. Therefore, the bilinear product βjqj
can be recast by a set of linear equations using exact lineariza-
tion schemes via disjunctive inequalities3 [31]. More precisely,
for each j ∈ N , we can identify the bilinear product as follows
βjqj ↔ τj , with τj feasible within the following set:

T
(
βj ,γj

)
=

{
τj ∈ R

∣∣∣∣ ∃ φj ∈ Rblog2(qj)c+1

+ ;

0 ≤ φj,l ≤Mγj,l,

∀ l ∈
{

1, . . . ,
⌊
log2(qj)

⌋
+ 1
}

;

0 ≤ βj − φj,l ≤M
(

1− γj,l
)
,

∀ l ∈
{

1, . . . ,
⌊
log2(qj)

⌋
+ 1
}

;

τj =

blog2(qj)c+1∑
l=1

2(l−1)φj,l;

}
. (28)

In this formulation, φj exactly recovers the bilinear product
between the binary vector γj and the continuous variable βj .
Therefore, the non-convex optimization problem (26) resumes
to the following MILP problem:

q∗j ∈ arg max
qj ,γj ,φj ,τj ,

g,π,β,β,η,η

τj
∣∣∣∣∣∣∣

Constraints (15)–(21) and (27);
τj ∈ T

(
βj ,γj

)
;

γj ∈ {0, 1}blog2(qj)c+1

 .

(29)

Next, we perform a similar procedure done in this section
for the master problem presented.

3Note that this approach can be adapted to any other discretization of the
set of offers with a constant step size.

B. Master Problem

At a given iteration k, let Q̂(k)
j ⊂ Qj be a subset of quantity

offers of a given generation company j ∈ N . The master
problem is thus designed to identify a novel feasible set of
offers q(k), candidate for being an equilibrium point. This task
is done by solving the optimization problem (23)–(25) with
Q̂(k)
j in (24). Following the reformulation procedures made

in the previous sections, problem (23)–(25) can be suitably
formulated as the following mixed-integer linear programming
problem:

max
Ξ(k),Ξ(qj)

∑
j∈N

τ
(k)
j (30)

subject to:

τ
(k)
j ≥ β(qj)

j qj , ∀ qj ∈ Q̂(k)
j , j ∈ N ; (31)

cj − π(k) + β
(k)

j − β
(k)

j
= 0, ∀ j ∈ N ; (32)

cj − π(qj) + β
(qj)

j − β(qj)

j
= 0, ∀ qj ∈ Q̂(k)

j , j ∈ N ; (33)∑
j∈N

g
(k)
j = d; (34)∑

i∈N
g

(qj)
i = d, ∀ qj ∈ Q̂(k)

j , j ∈ N ; (35)

0 ≤ β(k)

j ≤M η
(k)
j , ∀ j ∈ N ; (36)

0 ≤ β(qj)

i ≤M η
(qj)
i , ∀ i ∈ N , qj ∈ Q̂(k)

j , j ∈ N ; (37)

0 ≤ q(k)
j − g

(k)
j ≤M

(
1− η(k)

j

)
, ∀ j ∈ N ; (38)

0 ≤ qj − g
(qj)
j ≤M

(
1− η(qj)

j

)
,

∀ qj ∈ Q̂(k)
j , j ∈ N ; (39)
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0 ≤ q(k)
i − g

(qj)
i ≤M

(
1− η(qj)

i

)
,

∀ i ∈ N \ {j}, qj ∈ Q̂(k)
j , j ∈ N ; (40)

0 ≤ β(k)

j
≤M η(k)

j
, ∀ j ∈ N ; (41)

0 ≤ β(qj)

i
≤M η(qj)

i
, ∀ i ∈ N , qj ∈ Q̂(k)

j , j ∈ N ; (42)

0 ≤ g(k)
j ≤M

(
1− η(k)

j

)
, ∀ j ∈ N ; (43)

0 ≤ g(qj)
i ≤M

(
1− η(qj)

i

)
,

∀ i ∈ N , qj ∈ Q̂(k)
j , j ∈ N ; (44)

q
(k)
j =

blog2(qj)c+1∑
l=1

2(l−1)γ
(k)
j,l ∈ [0, qj ], ∀ j ∈ N ; (45)

τ
(k)
j ∈ T

(
β

(k)

j ,γ
(k)
j

)
, ∀ j ∈ N ; (46)

η
(k)
j , η(k)

j
,∈ {0, 1}, ∀ j ∈ N ; (47)

η
(qj)
i , η(qj)

i
,∈ {0, 1}, ∀ i ∈ N , qj ∈ Q̂(k)

j , j ∈ N ; (48)

γ
(k)
j ∈ {0, 1}blog2(qj)c+1, ∀ j ∈ N . (49)

For the sake of brevity, we identify the decision
variables in (30)–(49) with the vectors Ξ(k) =(
q(k),γ(k),φ(k), τ (k), g(k), π(k),β

(k)
,β(k),η(k),η(k)

)
and Ξ(qj) =

(
g(qj), π(qj),β

(qj)
,β(qj),η(qj),η(qj)

)
, ∀ qj ∈

Q̂(k)
j , j ∈ N . The MILP problem (30)–(49) can be interpreted

as a particular instance of an EPEC, suitable for off-the-shelf
commercial MILP solvers.

It worth to highlight that, by setting Q̂(k)
j = Qj , ∀ j ∈

N , problem (30)–(49) resumes to the large-scale complete
EPEC formulation that current technical literature solves [6],
[7], [13]. Needless to say, this full enumerated problem is
extremely challenging to solve for real-sized power systems
due to the exponential number of constraints within a MILP
problem, which advocate in favor of the CCG decomposition
algorithm proposed in this work and thoroughly described in
the next subsection..

C. Column-and-Constraint Generation Algorithm
The proposed two-stage algorithm to identify a Nash equi-

librium in pool-based electricity markets is based on the
iterative solution of the master (30)–(49) and oracle (29)
problems. This iterative process is carried out until a candidate
for an equilibrium point, identified by the master problem, is
verified as a Nash equilibrium by the oracle problem. The
proposed solution algorithm, as illustrated in Figure 1, is
summarized in Algorithm 1.

It is worth highlighting two interesting features of our
proposed solution methodology, which can be explored in
future works. Firstly, Step 2 of Algorithm 1 is suitable for
parallel computing, since each optimization problem can be
solved independently for each player j ∈ N . Secondly, the
computational efficiency of Algorithm 1 can also be signifi-
cantly improved by an adequate choice of the initial subset

Algorithm 1 – Column-and-Constraint Generation Algorithm

Initialization:
Set k ← 1.
Choose an initial subset Q̂(1)

j ⊂ Qj , ∀ j ∈ N .

Iteration k ≥ 1:
Step 1 – Master Problem: Identify a feasible offer q(k)

by solving the MILP problem (30)–(49).

Step 2 – Oracle Problem: ∀ j ∈ N , identify the best
response q∗j for its rival’s offer q(k)

−j by solving the MILP
problem (29).

if ∃ j ∈ N
∣∣ Rj(q(k)

j , q
(k)
−j
)
< Rj

(
q∗j , q

(k)
−j
)

Update Q̂(k+1)
j ← Q̂(k)

j ∪ {q∗j }, ∀ j ∈ N .
Set k ← k + 1.

else
Set q(e) ← q(k).
Return q(e).

end if

Q̂(1)
j ⊂ Qj , ∀ j ∈ N , e.g., by fast heuristic approaches. We

highlight, however, that both parallel computing and heuristic
initialization procedures are not in the scope of this work.

In the next section, a set of numerical experiments are
conducted aiming at illustrating the capability of the proposed
CCG algorithm, comparing its computational performance
with the solution of an EPEC via MILP solvers.

IV. COMPUTATIONAL EXPERIMENTS

To illustrate the solution capability of the proposed method-
ology, in this section, we perform a computational comparison
between the CCG method proposed in this work and the
direct solution of the fully-enumerated EPEC formulation via
a off-the-shelf commercial MILP solver. In this numerical
experiment, we analyze the computational effectiveness of
each method as the number of players (GENCOs) in the
market (n) increases. The instances, described by the pa-
rameters (d, c, q), were designed to scale with the number
of players in a meaningful manner as described next. For a
given n, the demand for electricity is scaled by the number
of players in the magnitude of 20, i.e., d = 20n MW. Then,
each power plant capacity was sampled such that the system
total capacity is equal to 1.2d. Additionally, in order to assure
dispatch feasibility in all instances regardless of the strategic
behavior of the GENCOs, we assume a deficit generator with
marginal cost of 1000 $/MW and total capacity equals to
the system demand. Furthermore, each player marginal cost
follows an Uniform distribution between 0 and 100 $/MW
(i.e, cj ∼ U(0, 100), ∀ j ∈ N ).

Following this structure, a total of 20 instances
were generated for the following market sizes
n ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50} and a running time
limit of 172,800 seconds (48hrs) per instance were allowed.
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All numerical results were obtained on a Dell Precision R©

T7600 Xeon R© E5-2687W 3.10 GHz with 128 GB of RAM
machine, with Gurobi R© Solver 8.0 under JuMP R©.

Figure 2 presents the average computing time to solve
sampled instances for each market size considered in this
study. We highlight that the performance of both solution
approaches (CCG and EPEC) are indistinguishable up to
n = 20 players. Nevertheless, the computational scalability
of the EPEC formulation, (30)–(49), is rapidly challenged
due to the exponential increase when more than 20 players
are considered. For instance, the full EPEC approach is 20
times slower, on average, than the proposed CCG algorithm,
for n = 30. Additionally, for more than 30 players in the
market, almost all instances sampled could not be solved by
the full EPEC formulation. On the other hand, the proposed
CCG algorithm was able to solve all instances of every market
size analyzed in a reasonable computational time.

In order to evaluate the potential computational difficulty
that each method may face to solve adverse instances, in Table
I, we present the average computational time of the worst
four instances for each market size n analyzed. Note that
the discrepancy between both methods from this worst-case
viewpoint is even higher. For instance, the solution time of
the full EPEC approach is 4 times slower than the proposed
CCG algorithm for n = 20 and n = 25, and reaches roughly
30 times for n = 30.

Finally, we present a comparative analysis for the strategic
and perfect competition equilibria4 for the particular instance
with n = 35 players. Firstly, we highlight that, as the master
problem aims at identifying an equilibrium with the highest
net revenue for each GENCO, the Nash equilibrium found
thus explores the deficit cost as the marginal generator in
every instance sampled. As a consequence, the spot prices at
equilibrium are equal to the deficit marginal cost and, since
the numerical experiments were designed to have an excess
of capacity, some GENCOs withhold capacity in the Nash
equilibrium. In fact, we observed that the average offer rep-
resents roughly 90% of the GENCOs capacity. Additionally,
the lowest offers on each instance are on average 10% of the
generators capacities and, when filtering the players that do not
offer full capacity, the average offer is approximately 40% of
the GENCO’s capacity. On the other hand, considering the
perfect competition, the spot price is, on average, 85% lower
than the most expensive generator.

V. CONCLUSION

Competition among power generators in pool-based elec-
tricity markets represents a key element on the restructuring
design occurred in most power systems around the globe.
In this context, equilibrium analysis, in particular the Nash
equilibrium, is of utmost importance for both GENCOs and
regulators. However, an important hindrance to adequately
perform such equilibrium analysis is an efficient methodology
to identify the Nash equilibrium in large-scale power systems.

4We refer to [32] for a wide discussion on perfect competition equilibria.

To tackle this issue, in this work, we adapt the Column-
and-Constraint Generation (CCG) techniques to design a
decomposition-based iterative algorithm to efficiently compute
Nash equilibrium in large-scale pool-based electricity markets.
More specifically, the proposed solution approach is based on
a master-oracle decomposition, in which, the master problem
identifies a set of offers candidate for a Nash equilibrium point
and the oracle checks if this candidate point is indeed an
equilibrium by computing the best response of each GENCO,
given their rivals “play” the equilibrium.

Numerical experiments comparing the computational per-
formance of the proposed CCG algorithm with the benchmark
approach, namely, the solution of a large-scale EPEC via
MILP solvers, corroborates the effectiveness of the proposed
method. We identify that the proposed solution approach over-
comes the benchmark (based on the full EPEC formulation) in
the magnitude of 20 times on average and more than 30 times
for the most demanding instances. Additionally, the scalability
of the benchmark is challenged as it was not able to solve most
of the medium-scale instances (i.e., systems with more than
30 players), whilst the proposed CCG algorithm could handle
all instances considered in the experiment in a reasonable
computational time.

It is important to highlight that the solution methodology
proposed in this work is an exact method and, after con-
vergence, it precisely solves the Nash equilibrium problem
defined in (23)–(25). Nevertheless, ongoing research includes
parallel computing and the combination of the CCG algorithm
here proposed with heuristic-based solution techniques aiming
at enhancing the computational capability of the proposed
method.

REFERENCES

[1] B. Fanzeres, A. Street, and L. A. Barroso, “Contracting Strategies
for Generation Companies with Ambiguity Aversion on Spot Price
Distribution,” in Proc. XVIII Power System Computation Conference
(XVIII PSCC) 2014, pp. 1–8, Aug. 2014.

[2] A. Creti and F. Fontini, Economics of Electricity: Markets, Competition
and Rules, 1st ed. Cambridge University Press, Aug. 2019.

[3] L. T. A. Maurer and L. A. Barroso, Electricity Auctions: An Overview
of Efficient Practices, 1st ed. The World Bank, 2011.

[4] K. Ito and M. Reguant, “Sequential Markets, Market Power, and
Arbitrage,” American Economic Review, vol. 106, no. 7, pp. 1921–1957,
Jul. 2016.

[5] C. A. Berry, B. F. Hobbs, W. A. Meroney, R. P. O’Neill, and W. R. S. Jr.,
“Understanding How Market Power Can Arise in Network Competition:
a Game Theoretic Approach,” Utilities Policy, vol. 8, no. 3, pp. 139–158,
Sept. 1999.

[6] L. A. Barroso, R. D. Carneiro, S. Granville, M. V. Pereira, and M. H. C.
Fampa, “Nash Equilibrium in Strategic Bidding: A Binary Expansion
Approach,” IEEE Transactions on Power Systems, vol. 21, no. 2, pp.
629–638, May 2006.

[7] D. Pozo and J. Contreras, “Finding Multiple Nash Equilibria in Pool-
Based Markets: A Stochastic EPEC Approach,” IEEE Transactions on
Power Systems, vol. 26, no. 3, pp. 1744–1752, Aug. 2011.

[8] J. Nash, “Non-Cooperative Games,” Annals of Mathematics, Second
Series, vol. 54, no. 2, pp. 286–295, Sept. 1951.

[9] T. Fujiwara-Greve, Non-Cooperative Game Theory, 1st ed. Springer
Japan, Jun. 2015.

[10] V. Conitzera and T. Sandholmb, “New Complexity Results about Nash
Equilibria,” Games and Economic Behavior, vol. 63, no. 2, pp. 621–641,
Jul. 2008.

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020



Fig. 2. Average computational time (seconds) to solve the sampled instances for market sizes of n ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}.

TABLE I
AVERAGE COMPUTATIONAL TIME (IN SECONDS) OF THE WORST 4 INSTANCES FOR EACH MARKET SIZE IN BOTH SOLUTION APPROACHES ANALYZED.

Number of Players (GENCOs)
10 15 20 25 30 35 40 45 50

CCG 1.83 2.14 39.96 242.27 1483.08 1916.11 4022.13 18863.70 30480.64

EPEC 1.34 4.92 151.03 927.69 48167.07 - - - -

[11] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The Complex-
ity of Computing a Nash Equilibrium,” SIAM Journal on Computing,
vol. 39, no. 1, pp. 195–259, May 2009.

[12] S. Leyffer and T. Munson, “Solving Multi–Leader–Common–Follower
Games,” Optimization Methods & Software, vol. 25, no. 4, pp. 601–623,
Aug. 2010.

[13] D. Pozo, E. Sauma, and J. Contreras, “Basic Theoretical Foundations and
Insights on Bilevel Models and Their Applications to Power Systems,”
Annals of Operations Research, vol. 254, no. 1–2, pp. 303–334, Jul.
2017.

[14] X. Hu and D. Ralph, “Using EPECs to Model Bilevel Games in
Restructured Electricity Markets with Locational Prices,” Operations
Research, vol. 55, no. 5, pp. 809–827, Sept.-Oct. 2007.

[15] B. Zeng and L. Zhao, “Solving Two-Stage Robust Optimization Prob-
lems using a Column-and-Constraint Generation Method,” Operations
Research Letters, vol. 41, no. 5, pp. 457–461, Sept. 2013.

[16] B. Fanzeres, S. Ahmed, and A. Street, “Robust Strategic Bidding in
Auction-Based Markets,” European Journal of Operational Research,
vol. 272, no. 3, pp. 1158–1172, Feb. 2019.

[17] A. Moreira, B. Fanzeres, and G. Strbac, “Energy and Reserve Scheduling
under Ambiguity on Renewable Probability Distribution,” Electric Power
Systems Research, vol. 160, pp. 205–218, Jul. 2018.

[18] B. Chen, J. Wang, L. Wang, Y. He, and Z. Wang, “Robust Optimization
for Transmission Expansion Planning: Minimax Cost vs. Minimax
Regret,” IEEE Transactions on Power Systems, vol. 29, no. 6, pp. 3069–
3077, Nov. 2014.

[19] A. Moreira, G. Strbac, and B. Fanzeres, “An Ambiguity Averse Ap-
proach for Transmission Expansion Planning,” in Proc. XIII IEEE
PowerTech Conference 2019, pp. 1–6, Jun. 2019.

[20] B. F. Hobbs, “Linear Complementarity Models of Nash-Cournot Com-
petition in Bilateral and POOLCO Power Markets,” IEEE Transactions
on Power Systems, vol. 16, no. 2, pp. 194–202, May 2001.

[21] J. B. Krawczyk and S. Uryasev, “Relaxation Algorithms to Find Nash

Equilibria with Economic Applications,” Environmental Modeling &
Assessment, vol. 5, no. 1, pp. 63–73, Jan. 2000.

[22] J. P. Molina, J. M. Zolezzi, J. Contreras, H. Rudnick, and M. J. Reveco,
“Nash-Cournot Equilibria in Hydrothermal Electricity Markets,” IEEE
Transactions on Power Systems, vol. 26, no. 3, pp. 1089–1101, Aug.
2011.
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