
An Improved Algorithm for Single-Unit
Commitment with Ramping Limits

Rogier Hans Wuijts∗†, Marjan van den Akker∗ and Machteld van den Broek†
∗ Department of Information and Computing Sciences

Utrecht University, The Netherlands
{R.H.Wuijts, J.M.vandenAkker}@uu.nl

† Copernicus Institute for Sustainable Development
Utrecht University, The Netherlands

M.A.vandenBroek@uu.nl

Abstract—The single-unit commitment problem (1UC) is the
problem of finding a cost optimal schedule for a single generator
given a time series of electricity prices subject to generation
limits, minimum up- and downtime and ramping limits. In this
paper we present two efficient dynamic programming algorithms.
For each time step we keep track of a set of functions that
represent the cost of optimal schedules until that time step. We
show that we can combine a subset of these functions by only
considering their minimum. We can construct this minimum
either implicitly or explicitly.

Experiments show both methods scale linear in the amount
of time steps and result in a significant speedup compared to
the state-of-the-art for piece-wise linear as well as quadratic
generation cost. Therefore using these methods could lead to
significant improvements for solving large scale unit commitment
problems with Lagrangian relaxation or related methods that use
1UC as subproblem.

Index Terms—Dynamic programming, single-unit commitment
problem, polynomial-time algorithm.

NOMENCLATURE

ft(pt) The cost of producing pt at time t ($
MW)

∆+ Ramp-up limit (MW
h)

∆− Ramp-down limit (MW
h)

P Maximum generation (MW)
P Minimum generation (MW)
cstart Time independent start cost ($)
cstop Stop cost ($)
Mdown Minimum down time (h)
Mup Minimum up time (h)
SD Shut-down ramp limit (MW)
SU Start-up ramp limit (MW)

I. INTRODUCTION

The unit commitment (UC) problem revolves around finding
the least cost power generation schedule for a set of generators
such that the demand is met at each time step subject to
technical restrictions [1].

The single-unit commitment problem (1UC) is a special
case of the UC problem in which the least cost schedule
is searched for only one generator subject to its technical
restrictions [2]. In this case, the generator is not required
to meet a demand, but a time series of electricity prices is

given that determines how much revenue the generator can
make at each time step. In this paper we will study 1UC with
generation limits, minimum up- and downtime and ramping
limits.

The relevance of 1UC lies in the fact that it arises as a
subproblem in the Lagrangian relaxation or column generation,
which have been shown to be competitive for UC [1]. For the
efficiency of these algorithms, the efficiency of solving 1UC
is crucial.

A solution to 1UC is a schedule that for every time
step specifies whether the generator is on or off and how
much power it is producing. The cost associated with power
production is the generation cost and consists of the cost of
operating the generator minus the revenue. The generation cost
is assumed to be convex and in the often modeled as a linear,
piece-wise linear or quadratic function. When 1UC is used
as a subproblem in the Lagrangian relaxation this revenue
corresponds to the Lagrangian multipliers.

Fan, Xiaohong Guan, and Zhai [4] solved 1UC with piece-
wise linear generation cost in O(n3) time by splitting the
problem in two parts. The first part of the algorithm is to
define on-periods. A on-period is a subsequence of time steps
of where the generator is on and must be larger or equal
to the minimum up time. Every on-period has an optimal
power output subsequence. Finding the optimal power output
subsequence for each on-period is an optimization problem.
Fan et al. solved this with a dynamic programming algorithm
that recursively partitions the continuous state space by finding
corner points of the cost-to-go function. In the second part,
these on-periods weighted by the optimal economic dispatch
costs, are combined in an optimal schedule by solving a
shortest path problem.

Frangioni and Gentile [2] improved this method by making
it more general. Their method of calculating the optimal
economic dispatch works for any convex cost function. Their
algorithm calculates the optimal economic dispatch of all on-
periods in O(n3) and finds the shortest path in another O(n3).
Guan et al. [3] found that a redefinition of the commitment
state space graph can speed up this second part to O(n2).

In 2010, Zhai, Xiaohong Guan and Gao [5] presented a
similar algorithm in which IUC is also split into two parts,

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020

but which has the advantage that it also works for non-convex
piece-wise linear cost functions.

In 2018 Yongpei Guan, Pan, and Zhou [3] introduced an
algorithm to solve 1UC in O(n) time. However, as a restriction
it only works with convex piece-wise linear generation cost
and when the ramp up and ramp down limits are equal to each
other. They solved 1UC by keeping track of a finite number
of points where the power production could be optimal.

II. OUTLOOK

In this paper we present two algorithms for solving 1UC that
improve upon previous algorithms in terms of generality, time
complexity and computation time in practice. Both algorithms
are based on two equivalent recurrence relations.

The idea for both relations is as follows: for each time step
we define all states the generator can attain and all valid state
transitions. After that we define the recurrence relation that
represents for each state at each time step the value of the
optimal schedule that ends in that state. However, since the
amount of states is infinite as the power output is continuous
we cannot solve these recurrence relations directly. Therefore,
1UC is reformulated in terms of recurrence relations on
functions, later defined as F τt and Hτ

t . These functions can
be constructed by partitioning their domain as was previously
done to calculate the optimal economic dispatch for on-
periods1. However, instead of computing the optimal economic
dispatch of an on-period beforehand F τt and Hτ

t represent the
cost of the complete 1UC schedule from time 1 up until time
t.

The first dynamic programming algorithm we defined, en-
ables the identification of superfluous functions F τt that are
always dominated by other functions i.e. for every power
output level pt there is another function with a lower cost. If
we remove superfluous functions the overall computation time
can be reduced. Identification of these functions comes at a
cost and has a worst case time complexity of O(n3). However,
in practice it has little computational overhead. Moreover, we
describe the conditions in which this algorithm grows linear
with the amount of time steps and show these conditions are
met for the instances we studied. This results in a speedup of
the algorithm of Frangioni and Gentile [2].

The second dynamic programming algorithm we defined,
combines subsets of on-states and thus reduces the total
amount of states. At the same time, the number of functions
the recurrence relation consists of diminishes, as multiple
functions are replaced by their combined minimum. When ft
is piece-wise linear we can create this function by only keeping
track of a finite number of points similar to the algorithm
of Guan et al. [3]. However, in contrast to the algorithm of
Guan et al. our algorithm, is more generic as it also works for
ramp up and ramp down rates which differ from each other.
Moreover, we show how to efficiently compute the values at
those points. This results in an improved algorithm in terms
of generality and time complexity.

1cost-to-go functions Lt in [4] and zhk in [2]

In section III we formally define the 1UC problem. In
section IV and section V we will state the recurrence relation
that solves 1UC and section VI we define and analyse a
dynamic programming algorithm, RRF+, that uses this recur-
rence relation. In section VII we show an equivalent recurrence
relation and in section VIII we define and analyse a dynamic
programming algorithm, RRH , that uses this recurrence rela-
tion when the generation cost function is piece-wise linear. At
last we conclude this paper in section IX with experiments
regarding our two algorithms for both piece-wise linear and
quadratic generation cost and show that they significantly
decrease the computation time compared to previous methods.

III. PROBLEM DEFINITION

A solution is represented as two vectors x ∈ {0, 1}n
and p ∈ Rn. Where x = x1 . . . xn represents the binary
commitment variables i.e. xt is 1 when the generator is
on at time t and 0 otherwise. The vector p = p1 . . . pn
represents the continuous power output variables that for each
time step indicates how much power a generator provides at
that time. The associated cost of a solution is determined by
time dependant generation cost function ft. Here ft(pt) is a
function that returns the generation cost of providing pt power
at time t. If the generator is on then the production must
be between the minimum generation P and the maximum
generation P . Moreover, if the generator is turned on(off),
it must stay on(off) for at least Mup(Mdown) time steps.
Finally, there are four ramping limits. There is a ramp-up
(∆+) and ramp-down (∆−) constraint that limits how much
two consecutive power output levels pt and pt+1 can differ
from each other. These limits only hold for two consecutive
time steps where the generator is on. Special ramping limits
apply when a generator starts or shuts down, the startup limit
SU and shutdown limit SD. We assume the generator can be
in any state at t=12. We can now define 1UC as the following
mixed integer program:

min ccycle(x) +
∑

t∈{1,...,n}

ft(pt) subject to (10)

Pxt ≤ pt ≤ Pxt, t = 1 . . . n (11)

pt+1 ≤ pt + xt∆
+ + (1− xt)SU, t = 1 . . . n− 1 (12)

pt ≤ pt+1 + xt+1∆− + (1− xt+1)SD, t = 1 . . . n− 1 (13)

x ∈ X, pt ∈ R (14)

ccycle(x) consists of the start-up cstart and shutdown cost
cdown of the commitment vector x. X is the set of feasible
commitment vectors with respect to the minimum up- and
downtime (14).

2Here we ignore the transition constraints and cost between t = 0 and t =
1. Alternatively, the state at t=0 can also be provided as input to the problem.

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020

c(offτt) = 0 t = 1 (1)

c(offτt) = min
pt−1∈[P,SD]

min
τ ′∈{Mup...t}

c(onτ
′

t−1, pt−1) + cstop t > 1 τ = 1 (2)

c(offτt) = c(offτ−1
t−1) t > 1 1 < τ < Mdown (3)

c(offτt) = min{c(offτ−1
t−1), c(offτt−1)} t > 1 τ = Mdown (4)

c(onτt , pt) = ft(pt) t = 1 P ≤ pt ≤ P (5)

c(onτt , pt) = ft(pt) + c(offMdown
t−1) + cstart t > 1 τ = 1, P ≤ pt ≤ SU (6)

c(onτt , pt) = ft(pt) + min
pt−1∈[pt−∆+,pt+∆−]

c(onτ−1
t−1 , pt−1) t > 1 τ > 1, P ≤ pt ≤ P (7)

c() =∞ otherwise (8)

F τt (pt) =


ft(pt) t = 1, P ≤ pt ≤ P
ft(pt) + c(offMdown

t−1) + cstart t > 1, τ = 1, P ≤ pt ≤ SU
ft(pt) + min

pt−1∈[pt−∆+,pt+∆−]
F τ−1
t−1 (pt−1) t > 1, τ > 1, P ≤ pt ≤ P

∞ otherwise

(9)

IV. FIRST RECURRENCE RELATION

In this section we define the state space and the correspond-
ing recurrence relation that solves it.

The state space represents the possible states of the gen-
erator for each time step. Every state at time t has a set of
feasible transitions to states at time t + 1 which depends on
ramping limits and minimum up and down time. It is therefore
necessary to keep track of how long a generator has been on
or off, until the minimum up- or downtime is reached, and to
keep track of the power output pt ∈ [P , P] when a generator
is on. The set of states that a generator can be in at time t is
defined as:

St =
⋃{

{offτt | τ ∈ {1 . . .Mdown}}
{(onτt , pt) | τ ∈ {1 . . .max(t,Mup)}, pt ∈ [P , P]}

(15)

Fig. 1. The commitment statespace and transitions of 7 time steps. The off-
states are represented as white nodes and the on-states as black nodes.

See Figure 1 for the binary commitment variables statespace
and transitions. The state offτt represents the state at time

t where the generator is off for τ time steps, but when
τ = Mdown it represents that the generator is off for at least
Mdown time steps. The state (onτt , pt) represents that at time
t a generator is on for τ time steps and produces pt at time t.

We will now define the recurrence relation c(st) that for
each state st returns the cost of the optimal 1UC schedule at
time t that ends in st (1)-(8) . For each state st this is defined
as the cost of that state, the minimum of c(st−1) over states
st−1 that can transition towards st and the transitions costs.

At t = 1 the generator can be in any state with only the
cost of being in that state and no transition cost, (1) and (5).

For t > 1 we can formulate every possible state transition
that respects ramping limits and minimum up- and downtime
and define the recurrent part of the recurrence relation by (2)-
(4) and (6)-(7).

There are three types of transitions to a state where the
generator is off. First, we can get to the first off-state off1

t

from an on-state (onτt−1, pt) where the generator is on for at
least Mup time steps and produces less than the shutdown
limit SD (2). Secondly we can get to the off-state offτt that
is off for τ > 1 time steps from an off-state that is off for
τ − 1 time steps (3). Thirdly, If τ = Mdown we can also get
to the last off-state offMdown

t from offMdown
t−1 (4).

For the on-states it is almost similar. We can only get to the
on-state (on1

t , pt), where pt is less than the startup limit SU ,
from an off-state offMdown

t−1 where the generator is off for at
least Mdown time steps (6). We can get to on-state (onτt , pt)
that is on for τ > 1 time steps from an on-state (onτ−1

t−1 , pt−1)
if the difference between pt and pt−1 respects the ramp-up
∆+ and ramp-down ∆− limit (7).

V. CONSTRUCTING F τt

Because the set of on-states is infinite, we cannot cal-
culate the cost of every possible on-state, (onτt , pt), explic-
itly. Therefore we construct for every t ∈ {1, . . . , n}, τ ∈

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020

{1, . . . ,max(t,Mup)} a function F τt such that F τt (pt) =
c(onτt , pt), the function is given by (9). Moreover F τt has a
piece-wise nature and is convex3.

In order to solve 1UC we need iteratively determine
c(offτt) and F τt for each t and τ . Solving 1UC efficiently
boils down to constructing F τt efficiently for all t and τ . In this
chapter we will present a method to construct F τt equivalent
to Frangioni and Gentile [2] but in a declarative way which is
in our opinion more intuitive.

Constructing the first F 1
t is easy since ft is given as input

and c(offMdown
t−1) is just a single value. The hard part of

constructing F τt is taking the sliding window minimum of
F τ−1
t−1 . Suppose p∗t−1 is a point in [P , P] for which F τ−1

t−1 is
minimal:

p∗t−1 = argminpt−1∈[P,P]F
τ−1
t−1 (pt−1)

To find the value of minpt−1∈[pt−∆+,pt+∆−] F
τ−1
t−1 (pt−1) for

a given pt three cases can be identified equivalent to those of
Frangioni and Gentile [2]:

min
pt−1∈[pt−∆+,pt+∆−]

F τ−1
t−1 (pt−1) =

F τ−1
t−1 (pt + ∆−) pt < p∗t−1 −∆−

F τ−1
t−1 (p∗t−1) p∗t−1 −∆− ≤ pt ≤ p∗t−1 + ∆+

F τ−1
t−1 (pt −∆+) pt > p∗t−1 + ∆+

(16)

In other words, if pt can be reached from p∗t−1

within the ramping limits, i.e. with a subtraction
smaller than ∆− or an addition smaller than ∆+ then
minpt−1∈[pt−∆+,pt+∆−] F

τ−1
t−1 (pt−1) = F τ−1

t−1 (p∗t−1).
Otherwise pt is either smaller than p∗t−1 − ∆− or larger
than p∗t−1 + ∆+. In the first case, since this function is
convex, the largest feasible pt−1 is optimal. Which is given
by pt−1 = pt + ∆−. Similar for the second case the smallest
feasible pt−1 is optimal. Which is given by pt−1 = pt −∆+.
The idea is illustrated in Figure 2.

Suppose the function F τ−1
t−1 consists of m piece-wise func-

tions g1
t−1 . . . g

m
t−1 over m intervals:

[P , p1
t−1], [p1

t−1, p
2
t−1], . . . , [pm−1

t−1 , P] (17)

git−1(pt−1) = F τ−1
t−1 (pt−1) pt−1 ∈ [pi−1

t−1, p
i
t−1] (18)

Suppose p∗t−1 falls in interval k, p∗t−1 ∈ [pk−1
t−1 , p

k
t−1]. We

now observe that pt 7→ minpt−1∈[pt−∆+,pt+∆−] F
τ−1
t−1 (pt−1)

consists of m + 2 piece-wise functions g1
t . . . g

m+2
t which

we can explicitly construct from the previous intervals. These
intervals are given by:

[P , p1
t], . . . , [p

k
t , p

k+1
t], . . . , [pm+1

t , P] (19)

pit =


max(P , pit−1 −∆−) i < k

max(P , p∗t−1 −∆−) i = k

min(P , p∗t−1 + ∆+) i = k + 1

min(P , pi−2
t−1 + ∆+) i ≥ k + 2

(20)

3Proof is omitted for brevity but convexity is easy to see if you look at the
epigraph of the new function created in (16).

Fig. 2. Visualising (16). Here the bottom axis represents how the domain
of F τ−1

t−1 (17) is partitioned and how its mapped to the domain of pt 7→
minpt−1∈[pt−∆+,pt+∆−] F

τ−1
t−1 (pt−1) (19).

git(p) =


git−1(p+ ∆−) i < k

gi−1
t−1(p∗t−1) i = k + 1

gi−2
t−1(p−∆+) i ≥ k + 2

(21)

Intervals that become [P , P] or [P , P] are redundant and
can be removed. Moreover if the optimal point lies on the end
point of an interval, say p∗t−1 = pkt−1, then the k+2st interval
becomes a single point and can be removed. Also note that if
g1
t−1 . . . g

m
t−1 are linear functions then the optimal point always

lies on a breakpoint. Therefore if ft is piece-wise linear only
one extra interval is introduced.

VI. ALGORITHM RRF (+)

Solving c with F τt is similar to the algorithm of Frangioni
and Gentile [2]. The major difference is that instead of pre-
calculating the optimal economic dispatch for on-periods we
now inductively for each time step create a set of functions F τt .
These functions represent the optimal 1UC schedule up until
time t which includes the optimal economic dispatch. This has
the advantage that we can identify functions that will not lead
to optimality and do not have to calculate the next function
F τ+1
t+1 . This is based on the following proposition:

Proposition VI.1. If a function F τt has the property ∀p ∈
[P , P] F τt (p) > minτ ′∈[Mup,t] F

τ ′

t (p) then a schedule in
which the generator at time t is on for τ time steps cannot be
optimal.

Proof is omitted for brevity. The idea is that for any t and
pt ∈ [P , P] all states (onτt , pt) where τ ∈ {Mup, t} have
equivalent state transitions. Therefore the antecedent implies
there exists a better schedule for every pt ∈ [P , P]. Therefore
F τt (p) can be forgotten and consequently all following F τ+i

t+i ,
1 ≤ i < n.

Irrelevant functions can be identified in multiple ways. One
way is to trace the minimum of all F τt functions and mark
those that are part of the minimum. After that we can remove
those functions F τt that are not marked. The minimum can be
traced by finding the function F τt that has the minimal value
at P . This function is part of the minimum and if it intersects
with another function at any point in [P , P] then that function

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020

is also part of the minimum. We can find every function by
iteratively finding intersections.

We call the algorithm that solves the recurrent relation
(1)-(8) by constructing the F τt functions without removing
irrelevant ones: RRF and the algorithm that removes the
irrelevant functions RRF+. The whole procedure of RRF and
RRF+ is outlined in Algorithm 1.

Algorithm 1 RRF(+)
1: Initialise F τ1 and c(offτ1)
2: for all t ∈ {2, . . . , n} do
3: for all τ ∈ {1, . . . ,Mdown} do
4: Determine c(offτt) with (2), (3) and (4)
5: end for
6: for all τ ∈ {1, . . . ,max(t,Mup)}/Irrelevant do
7: Determine F τt with (9), (19), (20) and (21)
8: end for
9: (Remove irrelevant functions by finding intersections)

10: end for
11: Backtrack to get the solution

A. Time Complexity

Let m be the maximum number of intervals of all F τt
functions at any time and let k be the maximum number of
relevant functions at any time:

m = max
t∈{1,...,n}τ∈{1,...,t}

intervals(F τt) (22)

k = max
t∈{1,...,n}

∣∣∣{τ ∣∣∣ τ ∈ {1, . . . , t},∃p ∈ [P , P]

F τt (p) ≤ min
τ ′∈{1,...,t}

F τ
′

t (p)

}∣∣∣ (23)

Regarding the complexity of RRF (+), Line 7 is repeated
O(nkm) times since the O(k) relevant functions have O(m)
intervals. Line 9 is repeated O(n) times and has a cost of
O(mk2) since the maximum number of intersections that can
occur for O(k) functions with O(m) intervals is O(mk2).

Therefore, the total time complexity of RRF+ is O(nmk2)
and RRF is O(n2m) since line 9 is skipped in which irrelevant
functions are removed. As the numbers k and m theoretically
could both be O(n) the time complexity of RRF+ and RRF
are O(n4) and O(n3) respectively.

However, we found that every function only has a small
number of intervals when we use generator data from specific
UC problems described in the literature. Moreover only a small
(most of the time only one) number of functions is minimal
at some point pt ∈ [P , P]. In this case our algorithm RRF+
runs in linear time (Table I).

ft is convex
Author/ Name Time Time Detailed Note
Frangioni et al. [2] O(n3)
RRF (this work) O(n3) O(n2m) m = max intervals
RRF+ (this work) O(n4) O(nmk2) k = max relevant functions

TABLE I
OVERVIEW 1UC ALGORITHMS

VII. SECOND RECURRENCE RELATION

In this section we present a different but equivalent recur-
rence relation that is based on the fact that it is only necessary
to keep track of how long a generator has been on up until
the minimum uptime is reached. Therefore we could reduce
the state space by reformulating the states St (15) to S′t:

S′t =
⋃{

{offτt | τ ∈ {1 . . .Mdown}}
{(onτt , pt) | τ ∈ {1 . . .Mup}, pt ∈ [P , P]}

(27)
See Figure 3 for the binary commitment variables statespace

and transitions. Now the state (onτt , p) represents the state at
time t where the generator is on for τ time steps and produces
pt at time t but when τ = Mup it represents that the generator
is on for at least Mup time steps.

Besides reducing the state space this also introduces an ad-
ditional type of state transition that can be made. Now we can
also get to the last on-state (on

Mup

t , pt) from (on
Mup

t−1 , pt−1)
if the difference between pt−1 and pt respects the ramping
limits. We define a new recurrence relation c′(st) similar to
c(st). For brevity we only show the parts of the recurrence
relation that differ from c(st) in (24) and (25).

Again since we cannot compute the cost c′(s) for every
possible state s we need to construct a function Hτ

t such that:
Hτ
t (pt) = c′(onτt , pt) and is defined in (26). Now it is easy

to see that ∀t ∈ {Mup . . . n}:

H
Mup

t (p) = min
τ∈{Mup...t}

F τt (p) ∀p ∈ [P , P] (28)

For any time step t, HMup

t is the minimum of multiple F τt
functions and this is the reason why we can remove irrelevant
functions in Section VI. Effectively we are trying to find the
smallest subset of F τt that represents HMup

t .
We can solve 1UC either by constructing F τt or Hτ

t . For
F τt there exists an efficient method to construct these functions
and to identify redundant functions. Constructing Hτ

t for any
convex function ft is harder since we need to iteratively take
the point-wise sliding minimum of two functions, one convex
HMdown−1
t−1 and one non-convex HMdown

t−1 see (26).

VIII. ALGORITHM RRH

We will now show a way to construct Hτ
t when ft is piece-

wise linear by storing Hτ
t at a finite set of points. When

solving the recurrence relation in this way the state space
becomes equivalent to the state space of Guan et al. [3]. But we
found a mistake in their formulation, fixed that mistake4 and
made the algorithm more general. Our algorithm also works
with non-equal ramping limits. Moreover, by a more in-depth
analysis of the recurrence relation we make the algorithm more
efficient.

When ft is piece-wise linear we can represent Hτ
t by only

storing a finite set of points that must contain the optimum
of F τt and, by a consequence of (28), of Hτ

t . This set also

4For example the point SU −∆ where ∆ = ∆+ = ∆− should also be
included.

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020

c′(offτt) = min
pt−1∈[P,SD]

c′(on
Mup

t−1 , pt−1) + cstop t > 1 τ = 1 (24)

c′(onτt , pt) = ft(pt) + min
pt−1∈[pt−∆+,pt+∆−]

min{c′(onτ−1
t−1 , pt−1), c′(onτt−1, pt−1)} t > 1 τ = Mup, P ≤ pt ≤ P (25)

Hτ
t (pt) =



ft(pt) t = 1, P ≤ pt ≤ P
ft(pt) + c′(offMdown

t−1) + cstart t > 1, τ = 1, P ≤ pt ≤ SU
ft(pt) + min

pt−1∈[pt−∆+,pt+∆−]
Hτ−1
t−1 (pt−1) t > 1, 1 < τ < Mup, P ≤ pt ≤ P

ft(pt) + min
pt−1∈[pt−∆+,pt+∆−]

min{Hτ−1
t−1 (pt−1), Hτ

t−1(pt−1)} t > 1, τ = Mup, P ≤ pt ≤ P

∞ otherwise

(26)

Fig. 3. The new commitment statespace and transitions of 7 time steps. The
off-states are represented as white nodes and the on-states as black nodes.

contains the points that are required to compute the optimum.
These are the points that are computed when solving the
recurrence relation, i.e. points that are on the path found by
backtracking from optimal points. We use Bft to denote the
set of breakpoints of the piece-wise linear cost function ft.
We use B to denote the set of all possible optimal points.
We use Q to denote the set of all optimal points plus those
points required to compute Hτ

t (b) for b ∈ B. Let the set B
be defined as:

1) {P , SU, P} ∪Bft ∈ B
2) if p ∈ B and p+ ∆+ < P then p+ ∆+ ∈ B
3) if p ∈ B and p−∆− > P then p−∆− ∈ B

Let the set Q be defined as:
1) B ∪ {SD} ⊆ Q
2) if p ∈ Q and p−∆+ > P then p−∆+ ∈ Q
3) if p ∈ Q and p+ ∆− < P then p+ ∆− ∈ Q

All proofs regarding B and Q are in the Appendix. When we
solve the recurrence relation c′ we need to calculate Hτ

t (pt)
for every t ∈ {1, . . . , n}, τ ∈ {1, . . . ,Mup} and pt ∈ Q.

For a single function Hτ
t where τ > 1 and for every pt ∈ Q

we need to find the point pt−1 ∈ [pt−∆+, pt+∆−]∩Q where
Hτ−1
t−1 (pt−1) is minimal. Finding this point can be trivially

done in O(|Q|) resulting in a total time complexity of O(|Q|2).
However if τ < Mup then Hτ

t is still a convex function
and the minimal point in Q is given as the argument of the
minimum of (16) and can be computed in O(1).

The case where τ = Mup could also be improved. We
can make use of the property that for two consecutive points

pt, p
′
t ∈ Q the set representing the interval around the points

Q∩ [pt−∆+, pt+∆−] and Q∩ [p′t−∆+, p′t+∆−] shares the
majority of elements. To find to minimum value for all points
is finding the sliding minimum over an array. All minimal
points can be found with a double-ended queue in O(|Q|).
The full Algorithm RRH is described here:

Algorithm 2 RRH
1: Initialise Hτ

1 and c(offτ1)
2: for all t ∈ {2, . . . , n} do
3: Compute c(offτt) with (2), (24) and (25)
4: for all τ ∈ {2, . . . ,Mup − 1} do
5: Determine Hτ

t (pt) with (26),(16) for all pt ∈ Q
6: end for
7: Create Dequeue D
8: for all p ∈ Q do
9: for all q ∈ (Q ∩ [p−∆+, p+ ∆−])−D do

10: Remove elements from end of D that
11: have value > max{HMup

t (q), H
Mup−1
t (q)}

12: Add q to the end of D
13: end for
14: Remove q ∈ D− (Q∩ [p−∆+, p+ ∆−]) from D
15: q ← the front of D
16: Hτ

t (p) = max{HMup

t (q), H
Mup−1
t (q)}+ ft(p)

17: end for
18: end for
19: Backtrack to get the solution

Creating all Hτ
t has a time complexity of O(n · |Q|). The

overall time complexity of RRH therefore becomes O(n · |Q|)
which is an improvement to complexity of O(n · |Q|2) from
Guan et al. [3].

ft is convex piece-wise linear
Author/ Name Time Time Detailed Restrictions
Fan et al. [4] O(n3) ∆+ = ∆−, SU = SD
Guan et al. [3] O(n) O(n · |Q|2) ∆+ = ∆−, SU = SD
RRH (this work) O(n) O(n · |Q|)

TABLE II
OVERVIEW 1UC ALGORITHMS

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020

IX. COMPUTATIONAL RESULTS

To test the efficiency we have implemented five algorithms
for linear and quadratic generation cost and tested it on gener-
ator data from instances in the UC literature. We gathered the
generator data of power systems from the following sources:
• A110, 110 generator instance (Orero and Irving [6]).
• TAI38, 38 generator instance (Huang et al. [7]).
• GA10, 10 generator instance (Kazarlis et al. [8]).
• KOR140, 140 generator instance (Park et al. [9]).
• RCUC200, 200 generator instance (Frangioni et al. [10]).

For all instances we solved the problem with 10 different time
series of electricity prices for every generator for 10 different
horizons ∈ {100, 200, . . . , 1000}. For every time step, ft is
constructed from the generation cost of the generator and
Lagrangian multipliers. In total we ran 49,900 different 1UC
problems and compared the following algorithms:
• RRF+, here we solve the recurrence relation c by con-

structing F τt and remove irrelevant functions as described
in section VI.

• RRH , here we solve the recurrence relation c′ by con-
structing Hτ

t with values in Q efficiently by the method
described in section VIII.

• Guan*, here we solve the recurrence relation c′ by con-
structing Hτ

t with values in Q but without the proposed
time complexity improvements. Here the algorithm is
equivalent to the algorithm of Guan et al. [3] if the
formulation was complete and extended for non-equal
ramping limits (hence the star).

• RRF , here we solve recurrence relation c by constructing
F τt without removing irrelevant functions. This algorithm
is, therefore, comparable to Frangioni and Gentile [2]
with the graph reduction mentioned in [3].

• Gurobi, at last we implemented the problem as a MI(Q)P
in Gurobi with a standard 3-bin formulation [11].

All algorithms where written in C# and run on an i7-8700K
3.70 GHz processor running on Windows 10.

A. Results

ft is linear ft is quadratic

Instance n R
R
H

G
ua

n*

R
R
F

+

R
R
F

G
ur

ob
i

R
R
F

+

R
R
F

G
ur

ob
i

GA10 100 0.2 0.3 0.8 2.2 17.1 0.6 2.5 22.6
TAI38 1 37.2 0.4 1.7 16.1 0.4 2.1 100
A110 0.1 0.2 0.4 1.6 13.1 0.3 2.1 17.4

KOR140 0.2 0.8 0.4 1.5 12.4 0.3 2 141.4
RCUC200 2.3 101.5 0.5 1.9 20.9 0.4 2.3 105.4

GA10 500 0.7 1.6 3.5 55.1 162.9 2.7 60.3 453.4
TAI38 4.3 191.9 2.4 44.1 44.8 1.7 52.6 853.2
A110 0.5 0.7 1.5 38.8 56.8 1.2 51.2 317.4

KOR140 1.1 3.8 2.4 38.4 55.2 1.7 49.7 2436.5
RCUC200 11 497.4 2.5 49.5 141.2 1.9 57.3 3410.9

GA10 1000 1.4 3.5 6.7 213.4 395.5 5.3 237.7 1355.8
TAI38 8.7 380.7 4.7 167.9 112.8 3.4 208.4 3838.3
A110 0.8 1.3 2.9 148.5 128.2 2.4 198.3 977.2

KOR140 2.2 7.8 4.8 152 122.2 3.4 198.9 3398.6
RCUC200 21.8 991.1 4.9 192 391.2 3.8 225.7 4980

TABLE III
AVERAGE COMPUTATION TIME TO SOLVE 1UC OF 10 TIME SERIES OF

ELECTRICITY PRICES FOR ALL GENERATORS IN 5 INSTANCES FOR 3
HORIZONS (100, 500, AND 1000 TIME STEPS), BOTH FOR THE PIECE-WISE

LINEAR AND QUADRATIC COST FUNCTION (IN MILLISECONDS).

ft is linear ft is quadratic
Instance max |Q| max m max k max m max k
GA10 15 6 5 9 5
TAI38 284 5 2 7 2
A110 12 6 5 9 5

KOR140 32 6 4 10 4
RCUC200 251 7 4 8 4

TABLE IV
PER INSTANCE, MAXIMUM VALUES OF m, k AND |Q| ALL GENERATORS IN
ALL TIME STEPS OF 10 HORIZONS WITH 10 TIME SERIES OF ELECTRICITY

PRICES.

RCUC200 TAI38

A110 GA10 KOR140

250 500 750 1000 250 500 750 1000

250 500 750 1000
0

25

50

75

100

0

25

50

75

100

Timesteps

Algorithm

 Guan*

 Gurobi

 RRF

 RRF+

 RRH

Fig. 4. The growth of the average computation time in milliseconds when the
amount of time steps increases when the generation cost function is linear.

The results are given in Table III, Table IV, Figure 4
and Figure 5. Table III contains the average running time in
milliseconds of the 1UC problems. Table IV contains for each
instance the maximum amount of points in Q, the maximum
number of intervals and the maximum number of relevant
functions for all experiments. Figure 4 shows the growth in
computation time when the time horizon is increased and
Figure 5 shows the ratio of problems solved for different
performance ratios.

For all problem instances RRF+ and RRH outperform the
other algorithms in terms of computation time. From Figure 5
you can see that in 40% of the cases RRH and in 60% of the
cases RRF+ has the lowest computation time.

When the generation cost is linear the geometric average
speed up of RRH compared to RRF+, Guan*, RRF and
Gurobi is 1.3, 7.3, 17.6 and 45.8. The geometric average speed
up of RRF+ compared to Guan*, RRF and Gurobi is 5.7, 13.6
and 35.7. When the generation cost is quadratic the geometric
average speed up of RRF+ compared to Guan*, RRF and
Gurobi is 22.0 and 387.9. Table III shows that even for large
time steps both algorithms solve 1UC in a few milliseconds.

The fact that Gurobi performs as one of the worst is also
not surprising since it is a general solver that tries to compete

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020

0.00

0.25

0.50

0.75

1.00

1 10 100

Performance ratio

R
at

io
 o

f p
ro

bl
em

s
so

lv
ed

Algorithm

Guan*

Gurobi

RRF

RRF+

RRH

Fig. 5. Graph that shows for increasing performance ratios the ratio of
problems that are solved within a factor, the performance ratio, of the best
performing algorithm for each instance.

with algorithms specifically designed for 1UC.
RRF+ outperforms RRF as it is a direct improvement of

RRF with a little computational overhead to identify redundant
functions. In theory (for now) the worst case analysis of RRF+
is worse than RRF but in practice it reduces the amount of
functions needed from O(n) to some small amount. For these
experiments we considered 49,900 different 1UC problems
and k was at most 5 and m at most 10 (Table IV). These
values where the same across all time horizons and did not
increase when we increased n. We can also see the direct result
of the linear vs quadratic growth in Figure 4.

The algorithm RRH is a direct improvement to Guan*. For
some instances where the set of optimal points Q is small
(Table IV) there is little to no difference (A110,GA10) but
for other instances where Q is much larger this difference
becomes significant (see TAI38 and RCUC200 in Table III).

X. CONCLUSION

We introduced a recurrence relation that solves 1UC. In
order to solve this recurrence relation we created multiple
functions F τt that for each pt ∈ [P , P] return the cost of
the optimal schedule that is on at time t for τ time steps
and produces pt. By creating these functions inductively we
were able to identify irrelevant functions and remove them.
Resulting in a time complexity of O(nmk2) where k is the
maximum number of relevant functions and m is the maximum
number of intervals of those functions. We showed that for the
instances studied k was at most 5 and m at most 10 and did
not increase when we increased the amount of time steps. In
practice this results in a computation time that grows linear in
the amount of time steps which improves the previous cubic
growth of the algorithm of Frangioni and Gentile.

We introduced a different recurrence relation Hτ
t that re-

quires fewer functions to be stored. These functions are harder
to create than F τt . However we showed that in the special case
where generation cost is piece-wise linear we only need to
keep track of a finite number of points Q to represent these

functions. The method of representing cost only at a finite
number of points is similar to the DP algorithm of Guan et
al. However our method works for non-equal ramping limits
and we showed how to efficiently compute the value at Q,
resulting in an improved algorithm in terms of generality and
time complexity of O(n · |Q|).

We performed computational experiments with generator
data from multiple power systems. The results show that
our algorithm, RRF+, that identifies and removes irrelevant
functions F τt and our algorithm, RRH , of representing Hτ

t as
a finite set points outperforms other methods with piece-wise
linear and quadratic generation cost.

Both methods increase the efficiency and can solve the
single-unit commitment problem for large time horizons in
a few milliseconds. This could lead to significant improve-
ments for solving large scale unit commitment problems with
Lagrangian relaxation or related methods.

ACKNOWLEDGEMENT

This work is part of the research programme “Energie: Sys-
teem Integratie en Big Data” with project number 647.003.005,
which is financed by the Dutch Research Council (NWO).

REFERENCES

[1] Wim van Ackooij, I. Danti Lopez, and Antonio Frangioni, Fabrizio
Lacalandra and Milad Tahanan, Large-scale unit commitment under
uncertainty: an updated literature survey Annals of Operations Research
271.1, pp. 11–85, 2018.

[2] Antonio Frangioni, and Claudio Gentile, Solving nonlinear single-unit
commitment problems with ramping constraints Operations Research
54.4, pp. 767–775, 2006.

[3] Yongpei Guan, Kai Pan and Kezhuo Zhou, Polynomial time algorithms
and extended formulations for unit commitment problems IISE transac-
tions 50.8, pp. 735–751, 2018.

[4] Wei Fan, Xiaohong Guan, and Qiaozhu Zhai, A new method for unit
commitment with ramping constraints Electric Power Systems Research
62.3, pp. 215–224, 2002.

[5] Qiaozhu Zhai, Xiaohong Guan, and Feng Gao. Optimization based
production planning with hybrid dynamics and constraints IEEE
Transactions on Automatic Control 55.12, pp. 2778–2792, 2010.

[6] SO Orero and MR Irving, Large scale unit commitment using a hybrid
genetic algorithm International Journal of Electrical Power & Energy
Systems 19.1, pp. 45–55, 1997.

[7] Kun-Yuan Huang, Hong-Tzer Yang, and Ching-Lien Huang, A new
ther- mal unit commitment approach using constraint logic programming
IEEE Proceedings of the 20th International Conference on Power Industry
Computer Applications, pp. 176–185, 1997.

[8] Spyros A Kazarlis, AG Bakirtzis, and Vassilios Petridis, A genetic
algorithm solution to the unit commitment problem IEEE transactions
on power systems 11.1, pp. 83–92, 1996.

[9] Jong-Bae Park et al. An improved particle swarm optimization for
nonconvex economic dispatch problems IEEE Transactions on Power
Systems 25.1, pp. 156–166, 2010.

[10] Antonio Frangioni, Claudio Gentile, and Fabrizio Lacalandra. Tighter
ap proximated MILP formulations for unit commitment problems IEEE
Transactions on Power Systems 24.1, pp. 105–113, 2009.

[11] Ostrowski, J., Anjos, M. F., Vannelli, A. Tight mixed integer linear
programming formulations for the unit commitment problem IEEE
Transactions on Power Systems 27(1), pp. 39–46, 2009.

[12] Li, Zhigang, Wenchuan Wu, Boming Zhang, Bin Wang, and Hongbin
Sun. Dynamic economic dispatch with spinning reserve constraints con-
sidering wind power integration. IEEE Power & Energy Society General
Meeting, pp. 1-5. IEEE, 2013.

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020

XI. APPENDIX, PROOFS ABOUT B AND Q

Proposition XI.1. If ft is a piece-wise linear function then
the break points of F τt are only in B

Proof. For τ = 1 its trivial. For τ > 1 assume
F τ−1
t−1 only has breakpoints in B. Recall that

minpt−1∈[pt−∆+,pt+∆−] F
τ−1
t−1 (pt−1) is constructed from

F τ−1
t−1 by shifting the intervals of F τ−1

t−1 and introducing one
new interval in the case where ft is a piece-wise linear cost
function. The new breakpoints are those already in B but
shifted down by ∆− or up by ∆+ and if they exceed P or P
they become P or P . In the first case those new points are
in B by definition 2) and 3), in the later case they are in B
by 1). The addition of ft can add breakpoints caused by the
fact that ft is piece-wise linear with breakpoints at Bft .

Proposition XI.2. If F τt is a piece-wise linear function then
a minimal point in interval [p, p′] of F τt is in B ∪ {p, p′}

Proof. Suppose the optimal point p∗t lies in [p, p′]. Then from
Proposition XI.1 we know p∗t ∈ B. Suppose p∗t /∈ [p, p′] since
F τt is convex the minimal point in [p, p′] is as close as possible
to p∗t bounded by the interval, this is either p or p′.

Proposition XI.3. If F τt is a piece-wise linear function then
then the minimum value at the end of a on-period has a
production value in B ∪ {SD}.

Proof. If the generator is last on at t then it can only produce
pt ∈ [P , SD]. Combined with Proposition XI.2 this is minimal
in B ∪ {SD}.

The minimum value at the end of a on-period has a
production value in B ∪ {SD}. These points however do not
only depend on points in B ∪ {SD}. Optimal points can also
depend on non-optimal points. We can iteratively capture these
additional points by the set Q. That is a set of all the points
from which F τt is minimal plus all the points that are needed
to compute the minimal points.

The recursive rules of Q come from the following observa-
tion: suppose we want to know the value of F τt (pt) for some
point pt ∈ {B ∪ SD}. The value of this point is constructed
from the minimum in [pt − ∆+, pt + ∆−]. From Proposi-
tion XI.2 we know this minimum is in Q∪{pt−∆+, pt+∆−}.
The set Q therefore needs to contain all the points that are on
the path found by backtracking from optimal points.

From (28) its easy to see the three propositions also hold
for Hτ

t . Moreover Q are the only points we need to store to
represent Hτ

t .

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020

