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Abstract—This contribution applies meta-heuristic optimiza-

tion algorithms for the optimization of controller implementa-

tions for modular multilevel converters in HVdc applications.

The proposed toolbox allows optimization of parameters and

structure of the controllers with arbitrary user-defined objective

functions related to macroscopic as well as microscopic stability

properties of the converter itself as well as within the overall

system. Different meta-heuristic algorithms are compared with

respect to calculation efficiency and achieved optimized values.

Index Terms—control design, converter control, EMT, meta-

heuristic optimization, passivity-based stability assessment

I. INTRODUCTION

With an emerging rate of power electronic based transmis-
sion units planned within the power grid as, for instance,
modular multilevel converters (MMC), thorough studies re-
garding their transient behaviour as well as screening studies
related to their frequency characteristic have gained tremen-
dous importance [1]. Both aspects are directly impacted by
the design as well as structural implementation of converter
controllers as shown for different inner control structures and
control modes in e.g. [1]–[4], respectively. This opens the
research question on how to optimize control design and
implementations of a converter with respect to several stability
properties affecting the control accuracy and overall system
stability after installation.

Meta-heuristics offer algorithmic frameworks to solve com-
plex optimization problems. Their main applications include
the optimal design in the areas of parametric, topological
and combinatorial problems. Comprehensive literature and
overviews are widely available [5]–[7]. In contrast to white-
box optimization problems where an exact mathematical
model of the underlying system is applied, meta-heuristics aim
at solving a potentially high-dimensional black-box system.
While white-box models allow the application of methods that
analytically or numerically optimize a known mathematical
model, in meta-heuristics only a simulation or real-world
experiment is given. [8] reviews meta-heuristic algorithms for
parameter optimization of power converters for tasks regarding
power quality and waveform related issues, control tuning as
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well as circuitry. The paper reviews the application of meta-
heuristics to general tasks in converter optimization but has
no distinct focus on HVdc applications.

The purpose of this paper is to expand the idea of control de-
sign related optimization by an additional optimization of the
implemented control structure as, for instance, feed-forward
or setpoint connection paths. Therefore, classic control design
methods are not applied.

The approach chosen within this paper makes use of an
MMC model implemented in the software PSCAD for elec-
tromagnetic transient (EMT) studies. This has the advantage
that non-linearities of relevant equipment (e.g. transformers
and power electronics) or controllers (e.g. limiters, saturation)
may be included [9], [10]. Moreover, grey-boxed models might
be taken into account.

Therefore, a toolbox is developed which allows an interface
between meta-heuristic optimization algorithms implemented
in python and an EMT model of an MMC-HVdc link with
an arbitrary control structure implementation in PSCAD. The
optimizer creates solutions with parametric and structural in-
formation for controllers which is transferred to the EMT sim-
ulation environment. Here, the resulting behaviour is recorded
and a certain objective function value is obtained with respect
to a user-defined desired behaviour which is subsequently
returned to the optimization algorithms. Hence, the objective
function defines the optimization idea and performance.

As elaborated in previous research [4], different controller
implementations may result in similar step responses in time
domain, but lead to different passivity and damping properties
of the converter within the frequency domain. Therefore, the
introduced toolbox enables to optimize control structure and
design related aspects in the time as well as the frequency
domain. The aim is to obtain a controller implementation and
design with optimized transient, damping as well as passivity
properties. Thus, the introduced toolbox can be utilized to
eliminate or minimize macroscopic instability problems over
a defined frequency range with respect to a desired control
accuracy of the observed converter model itself.

For the optimization of controller parameters 18 different
meta-heuristic optimization algorithms [11]–[27] from the
classes of evolutionary, physically, biologically and system-
and human-inspired as well as swarm based algorithms are
applied. The developed tool allows the parallelized calculation
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of multiple parameter sets to decrease optimization time. Meta-
heuristic algorithms are evaluated with respect to obtained
optimized values, time efficiency as well as the proposed
optimization setting.

The remainder of this paper is organized as follows. Sec-
tion II introduces the basics for the optimization framework
with respect to the meta-heuristic optimization procedure,
considered optimization algorithms and the considered EMT
model. The implementation and mathematical description of
the optimization framework is provided in Section III whereas
Section IV describes the development of the objective func-
tion. Section V evaluates the optimization performance and
Section VI concludes the paper.

II. OPTIMIZATION TOOLBOX BASICS

This contribution introduces an optimization framework for
arbitrary control structure implementations of an MMC. An
introduction of the applied optimization techniques as well
as the underlying EMT converter and control model for the
toolbox are provided in the following.

A. Meta-heuristic optimization
Fig. 1 shows the general interaction between the system

(called environment) and the optimization solver.

parameter set
iteration࣪

Environment/
System

Optimizer

Fig. 1. General Interaction during meta-heuristic optimization procedure

Each iteration consists of a candidate population P that
comprises multiple parameter sets and is passed to the envi-
ronment. The environment can be an arbitrary parameterized
system model that can be directly queried (e.g. tested in an
experiment) or simulated on a computer. Given the candidate
population P , the environment is evaluated for each provided
parameter set in P , yielding a set of respective objective
values J . These objective values are then passed to the
optimizer which calculates the next parameters to be evaluated.
This procedure is applied iteratively with the goal of find-
ing a parameter configuration that minimizes a certain user-
defined objective function. Note that in several applications
the optimization problem is formulated as a maximization
of an objective function. To ensure consistency with typical
formulations of objective functions in engineering, we make
use of the notation as a minimization of an objective function.
However, an equivalent formulation is possible by multiplying
the objective by minus one and turning the task into a
maximization problem (e.g. maximizing a fitness function).
Ideally, the optimizer finds the global optimum in the shortest
possible time. In reality, however, there is no algorithm that is
the best optimizer for all classes of problems [28]. This opens

the research question to find the most suitable solver for a
given problem class. The task of finding a solution to a given
objective function faces a certain trade-off between exploita-
tion and exploration which varies for different optimization
tasks. These properties are described as:

• exploitation: Using information from previous iterations
to focus on a region with low objective function values

• exploration: Exploring different (previously unvisited)
regions of the solution space

A fully exploring algorithm (e.g. sampling uniformly ran-
domly from the solution space) might take too long to find
a suitable solution. A fully exploiting algorithm, however,
can get easily stuck in local minima of the objective func-
tion. Finding a good trade-off between these two criteria
for the given problem class is an important procedure when
applying meta-heuristic algorithms. The various meta-heuristic
optimization algorithms can be, based on their source of
inspiration, divided into different categories. In this paper,
common implementations of algorithms from the literature of
the categories swarm based, evolutionary algorithms, physi-
cally, biologically, system and human inspired are applied and
compared with respect to their optimization performance on
the given task. The choice of the respective algorithms is done
based on the availability of open-source implementations, as
well as the performance of these algorithms in benchmark
optimization problems. An overview of these algorithms and
their respective implementations is shown in Tab. I.

TABLE I
OVERVIEW OF APPLIED META-HEURISTIC OPTIMIZATION ALGORITHMS

Category Algorithm Acronym

swarm Particle Swarm Optimization [11] PSO
based Phasor Particle Swarm Optimization [12] PPSO

Self-organising Hierarchical PSO with Time-
Varying Acceleration Coefficients [13]

HPSO

Chaos Particle Swarm Optimization [14] CPSO
Whale Optimization Algorithm [15] WOA
Grey Wolf Optimizer [16] GWO
Random Walk Grey Wolf Optimizer [17] RW-GWO

evolutionary Differential Evolution [18] JADE
physically Nuclear Reaction Optimization [19] NRO

Equilibrium Optimizer [20] EO
biologically Virus Colony Search [21] VCS
system Artificial Ecosystem-based Optimization [22] AEO
inspired Adaptive Artificial Ecosystem-based Opti-

mization [23]
Ad-AEO

Enhanced Artificial Ecosystem-based Opti-
mization [24]

Enh-AEO

human Teaching-Learning-based Optimization [25] TLO
inspired Social Ski Diver Optimization [26] SSDO

SSDO & Levy Flight [23] LevySSDO
Forensic-Based Investigation Optimiza-
tion [27]

FBIO

B. EMT model

The idea of the presented toolbox is to optimize the
behaviour of an arbitrary MMC control system. Hence, a
525 kV HVdc scheme in symmetric monopolar configuration
according to Fig. 2 is considered as environment within
the optimization procedure. An MMC converter and control
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Fig. 2. Overview of the considered EMT model.
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Fig. 3. Single phase view of the utilized MMC average value model.

model of the 1.3 GVA station T1 is implemented in detail as
well as a frequency-dependent phase model of a 100 km dc
cable system. The cable terminal is connected to a controlled
dc source uT2

dc providing the output of dc side controls at
station T2. The rated power of the dc link is 1 GW.

The MMC is modeled as an Average Value Model based
on switching functions according to [9] which is applicable to
high level control system design studies as undertaken within
this contribution. A single phase representation of the MMC
model is depicted in Fig. 3 valid for each phase y 2 {1, 2, 3}.
Utilizing mesh analysis and neglecting ohmic losses, the fol-
lowing equations are derived for the positive and the negative
arm in each phase y:

uy + Larm · d
dt
ip,y + up,y �

udc

2
= 0 (1)

uy � Larm · d
dt
in,y � un,y +

udc

2
= 0 (2)

Arm capacitor voltage u⌃
C,s,y corresponds to the sum of

all capacitor voltages (2.5 kV each) in one arm, whereas
s✏{p, n} denotes quantities for positive and negative arms,
respectively. Arm voltages us,y depend on the modulation
index ms,y as well as the arm capacitor voltages in each arm.
Charging dynamics of all N = 270 submodule capacitors CSM
(8.5mF each) are modelled according to (3). The phase mod-
ule current iphm,y as well as ac current iy are introduced in (4).

us,y = ms,yu
⌃
C,s,y,

CSM

N

d
dt
u⌃

C,s,y = ms,yis,y (3)

iphm,y =
ip,y + in,y

2
, iy = in,y � ip,y (4)

Now, arm delta voltages as well as arm sum voltages are
introduced according to (5) and (6).

u�,y =
un,y � up,y

2
=

Larm

2

d
dt
iy + uy (5)

u⌃,y =
up,y + un,y

2
= �Larm

d
dt
iphm,y +

udc

2
(6)

Here, (5) represents the ac side system dynamics of an MMC,
(6) reflects internal and dc side dynamics.

C. MMC controls
Within this contribution, the introduced optimization

methodology is utilized to find optimized controller parameters
as well as controller structures in grid-following converters. A
grid-following converter follows the voltage of the connected
ac grid in amplitude and frequency and adapts its control
values to provide a desired active and/or reactive current. Here,
several control methodologies exist [9], [10], [29], whereas
the hierarchical structure of the main control functionalities is
depicted in Fig. 4(a).

Within the outer control layer, the user decides if optimiza-
tion is undertaken for the converter station in udc/Q control
mode or P/Q control mode i.e. within this layer the user
specifies if the detailed station T1 provides the dc voltage for
the dc link (udc/Q control) and acts as a master or if the
station controls the dc current and hence, defines the power
transfer within the dc link (P/Q control). For more detailed
explanations regarding the control modes, the reader is referred
to [9]. As the chosen control mode is applied for the detailed
station T1, the dc side of the dc station equivalent T2 (uT2

dc )
is controlled the other way with controller output 2uref

⌃,0.
Fig. 4(b) gives an overview of the considered MMC control

options. Measured quantities are denoted with superscript m.
For sake of simplicity, all controllers G represent proportional
integral controllers of type G = kP + 1

Tis
. In Fig. 4(b),

structural optimization parameters are of type binary and
highlighted in blue. Moreover, controller parameters kP and
Ti of red edged boxes of controllers G are taken into account
for optimization which are of type real.

Within this contribution, the focus is set on the P/Q control
mode, see GP and GQ for active and reactive power, respec-
tively. The ac currents are controlled by Gac in synchronous
reference frame (dq�frame). The related transformation angle
is provided by a phase locked loop (PLL) which is designed
according to [30]. Inner as well as dc currents are controlled
in stationary reference frame (↵�-frame) by means of Gint and
Gdc, respectively.

As indicated in Fig. 4(b), several power controller im-
plementations are taken into account in order to provide
the reference values for the ac current controller iref

dq . Here,
different methods are introduced to obtain iref

dq from the power
controller outputs P ref and Qref, for instance, see (7) and (8).
Variable ud0 is the steady-state voltage value of ud which
corresponds to

p
2p
3
400 kV, as the PLL controls uq to zero.

iref
d =

2P ref

3ud0
, iref

q = �2Qref

3ud0
. (7)
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Fig. 4. (a) Hierarchical MMC control overview, (b) detailed overview of the P/Q-controlled station control highlighting all considered controller options.

iref
d =

2(P refum
d +Qrefum

q )

3((um
d )2 + (um

q )2)
, iref

q =
2(P refum

q �Qrefum
d )

3((um
d )2 + (um

q )2)
.

(8)
As shown in [10], energy-based as well as non-energy-based
MMC control approaches exist. For the former method, the
energy within the MMC is explicitly balanced by means
of several energy balancing controllers (depicted as optional
energy controllers in Fig. 4), as, for instance, energy con-
trollers Ghor, Gver and Gtot according to [31] to compensate
horizontal (�ehor) and vertical (�ever) imbalances within the
MMC as well as average energy deviations (�etot) within
the submodule capacitors. For the non-energy-based approach,
circulating current suppression controllers are applied (see
e.g. [9]) i.e. the reference values for phase module current
controllers are set to zero. As indicated in Fig. 4(b), both
options may be chosen by the optimization algorithms.

Limitation schemes are not applied within the controllers
to improve the detection of an unwanted controller behaviour.
Hence, a controller design leading to high overshoots must be
penalized in the objective function during optimization.

III. DESCRIPTION OF THE OPTIMIZATION FRAMEWORK

The developed framework aims at finding optimal parame-
ters of an arbitrary control structure. As backend, simulations
in the software PSCAD are used. Fig. 5 shows the interaction

Fig. 5. Overview of proposed meta-heuristic optimization interface.

between the optimizer (written in the software python) and the
EMT simulations in PSCAD.

A. Mathematical Description

As in the general interaction depicted in Fig. 1, the op-
timizer creates individual solutions Lj = {xj,1, . . . , xj,n},
for n parameters. The user-defined objective function of each
solution returns a scalar value J(Lj) after the simulation is
finished. A population is defined as the combination of tuples
of individual solutions and their respective evaluated objective
function values Pi = {(L1, J(L1)), . . . , (Lp, J(Lp))}, where
p is the population size and describes how many candidate
solutions are generated in each iteration of the optimization
procedure. Equation (9) shows the objective function in its
general form.

J(Lj) = ↵ · Jfreq(Lj) + � · Jtime(Lj) + � · "(Lj) (9)

The objective function consists of three terms that can be
weighted with the fixed parameters ↵, � and �. The first
term Jfreq(Lj) penalizes deviations in the frequency do-
main from the (user-defined) desired properties. The second
term Jtime(Lj) applies the same concept to the time domain. A
third term "(Lj) can be used to penalize additional undesired
behaviour. Hence, the last term may be utilized to ensure that
the chosen parameters are within a technical feasible range.

Based on the parameters and their respective objective func-
tion values of previous iterations {P0, . . . ,Pi}, the optimizer
calculates the new population of candidate solutions Pi+1.
Note that the individual optimizers all work differently, which
means that the information from previous iterations might not
or only partially be used. The generic interaction between
optimizer and environment is summarized in Algorithm 1.
It is important to note that meta-heuristic algorithms are
highly dependent on the choice of starting population P0,
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Algorithm 1 Generic meta-heuristic interaction algorithm
Input

↵,�,�: objective func params
maxit, stopfit: Stopping criterions
p: population size
n: number of parameters

Initialize

P0  GetInitialSolution

Env  Environment(↵,�,�)
Opt  Optimizer()

done  False

1: procedure PARAMETER OPTIMIZATION(i = 0, 1, 2, . . . )
2: while not done do

3: {J(L1), ..., J(Lp)} Env.sim({L1, ..., Lp}i)
4: Pi  {(L1, J(L1)), ..., (Lp, J(Lp))}i
5: {L1, . . . , Lp}i+1  Opt.step(Pi)
6: i i+ 1
7: if i >maxit or min(J) <stopfit then

8: done  True

9: end if

10: end while

11: end procedure

which makes mandatory multiple runs of each algorithm from
different starting points.

B. Implementation of the Optimization Framework
The optimization procedure and interaction framework is

written in Python 3.7, making use of the python imple-
mentation of the optimization algorithms of [32], where the
algorithms in Tab. I are adopted to be applicable in the
presented ask-tell interaction procedure. Communication with
PSCAD is done using the PSCAD Automation Library. As
indicated in Section II-C, a solution Lj comprises structural as
well as parametric information for controllers. The population
size is limited to a multiple of the number of available parallel
licenses. In our case, the population size can be chosen to be
p = 16 · z where z 2 N+. This represents a compromise
between investment costs and computation efficiency. The
optimization is performed on a computer with an AMD Ryzen
Threadripper 3990X 64 core processor with 128 GB of RAM.

IV. DEVELOPMENT OF THE OBJECTIVE FUNCTION

The choice of an adequate objective function is a sensitive
part within the optimization framework as it directly influences
the real-world behaviour of the optimized controller. When
defining a desired behaviour of an MMC, several physical
quantities are important and require monitoring.

A. Time domain objective function
For the objective function related to the time domain Jtime

several individual summands are taken into account. For sake
of simplicity, a P/Q controlled terminal is optimized within

this contribution. Therefore, all individual summands consider
the response of several MMC quantities to a power setpoint
step as soon as the HVdc link is started up. First, an active
power step from 0 to nominal active power transfer occurs
(P set = 1 GW) and subsequently a reactive power step from
0 to nominal reactive power (Qset = 300 Mvar).

After simulation of the current population Pi, the following
individual summands are calculated in each iteration in order
to obtain Jtime:

• JP/Q: At the P/Q-controlled terminal the desired be-
haviour related to the ac side of the MMC is an injection
of the set points for active and reactive power (P set

and Qset). Here, a mean squared error (MSE) between
power setpoints and measured power quantities is calcu-
lated for active and reactive power, respectively. More-
over, parameter sets leading to unrepresentable power
values within the EMT simulation are strongly penalized
by returning high objective values.

• Jdc: In order to optimize the dc side behaviour of the
MMC, the dc voltage is taken as criteria. A MSE between
the steady-state dc voltage value and the measured dc
voltage is taken into account. Hence, critical overshoots
resulting in possible insulation coordination issues are
penalized. Again, unrepresentable dc voltage values are
strongly penalized by returning high objective values.

• Jenergy: The functionality of internal quantities as well as
the energy balance within the submodule capacitors is
evaluated by means of energy quantities. Here, the MSE
of energy quantities related to �ehor, �ever and �etot are
considered, penalizing unrepresentable energy quantities.

The objective function related to time domain aspects is
summed up as shown in (10) by means of specified weights w
for the introduced individual summands. These weights allow
to weight the three different summands of the objective
function by applying high weights to important characteristics
and low weight values to unimportant characteristics.

Jtime = wP/QJP/Q + wdcJdc + wenergyJenergy (10)

As e.g. power and energy values are, due to their respective
physical quantities, on other scales, the weights are utilized
to create a balanced importance of all individual summands
J⇠ for ⇠ 2 {P/Q, dc, energy}. To obtain adequate weights, a
known good start parameter set Lgood is taken into account.
This start parameter set is obtained by typical control design
methods (symmetrical optimum method and modulus optim-
ium method) for a fixed controller implementation as shown
in [31]. Subsequently, a population Pgood is created using a
Gaussian distribution around the specified starting parameters
with a standard deviation of � = 0.5 · x0,i and mean µ = x0,i

for all parameters i. Then, the objective values of individual
summands are obtained by running a simulation set utilizing
the parameter sets from the created good population Pgood.

The weights w⇠ are defined by w⇠ = ⇠/J̃⇠(Pgood) with
J̃⇠(Pgood) representing the median objective value of the
individual summands resulting from the good start population
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Fig. 6. Evaluation of optimization results: (a) Best solution for considered optimization algorithms over all iterations, (b) Performance of optimization
algorithms over all iterations and (c) Relative improvement of all algorithms for an optimization with both 60 and 120 iterations.

and ⇠ is a user-defined weight for the respective summand.
Within this contribution ⇠ is set to 1.

B. Frequency domain objective function
For the objective function related to the frequency do-

main Jfreq we evaluate results obtained by frequency sweeps.
Depending on the desired use case, the frequency sweep may
be conducted at the ac or dc terminal of the converter station.

Regarding system stability, it is preferred that the overall
system’s impedance Z has enough phase margin to avoid
unwanted interactions [1]. The overall system, consisting of
the converter and the ac (or dc) grid, is therefore evaluated at
its connection point of interest (ac or dc). It highly depends
on the knowledge base (e.g. grid data) of the user whether the
impedance of the overall system or solely the impedance of
the converter shall be chosen by the user to be evaluated.

Again, several factors are regarded which can be weighted
as defined by the user or can be obtained similarly as described
for Jtime. The latter option is chosen in this contribution. For
the overall system evaluation, a passive system, i.e. <{Z} > 0,
results in good objective values, whereas non-passive regions
are penalized in an individual summand Jpassive. Moreover,
the phase margin at resonant points is optimized. For the
converter-standalone evaluation, a passive behaviour results
in good objective values, too. However, depending on the
operation point and due to existing system delays, non-
passive regions still occur. Therefore, the converter’s damping
properties are optimized for these non-passive regions in Jd.

V. EVALUATION OF OPTIMIZATION FRAMEWORK

In order to evaluate the performance of the introduced
optimization framework, we started different optimizations for
the control design problem shown in Fig. 4(b). For sake of
validation, we show time domain optimization results in a first
stage, see Fig. 6. Hence, ↵ in (9) is set to zero. Moreover,
it is worth mentioning that an additional penalizing term
related to technical constraints led to a reduced performance
of optimization algorithms as minimums were found less easy.

We applied the same random seed P0 for all optimizations
to obtain comparable results. Therefore, all algorithms start

from the same objective function value (J(P0) = 31.49),
see Fig. 6(a). The optimization was conducted over 120
iterations for all implemented algorithms. Obviously, all al-
gorithms result in an improvement of control behaviour, i.e.
J is minimized, whereas the final objective function value
differs for the algorithms. Therefore, Fig. 6(b) evaluates the
optimization behaviour of each algorithm. The black dotted
lines correspond to the best J over the iterations as depicted
in Fig. 6(a), whereas the blue lines show the best J of Pi at
iteration i. Median J is the median over all objective values for
the population Pi. One can observe that algorithms like VCS
and FBIO itensify exploration, whereas algorithms like PPSO,
HPSO, CPSO, GWO, RW-GWO, EO, AD-AEO, Enh-AEO,
SSDO and LevySSDO reach low medians at little iterations
and thus obviously change from exploration to exploitation at
a certain iteration. When evaluating WOA, the best solution
shows very high J values even at high iterations.

To show consistency of the optimization algorithms across
different executions, all algorithms were run several times at a
fixed random seed. Fig. 6(c) shows the relative improvement
of J for two optimizations of each algorithm with 60 and 120
iteration steps. Comparing these results, it is observed that the
algorithms manage to give better results at a higher iteration
number (except for AEO and Ad-AEO) and that the achieved
objective values are in similar ranges for both executions. The
best relative improvement of the objective function value was
1203% by means of EO and the smallest improvement rate
(197%) was realized by SSDO and LevySSDO. Algorithms
EO, HPSO and FBIO are the most successful optimizers for
the formulated problem regardless of the number of iterations.
Although, the algorithms SSDO, LevySSDO, CPSO and RW-
GWO have also managed to improve, their best parameter
sets are at rather lower improvement rates compared to the
other algorithms. Focussing on time efficiency, algorithms
VSC, NRO and EO show the highest relative improvement
rate per hour, whereas SSDO, LevySSDO, CPSO RW-GWOA
and WOA have the smallest due to their comparatively low
improvement. This suggests that they are less suitable for the
given problem. Generally, initialization of PSCAD as well
as the EMT simulation itself represents the bottleneck of
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Fig. 7. Time domain results for Lgood as well as achieved solutions by algorithms with small improvement rates (SSDO and RW-GWO) as well as highest
improvement rates (HPSO and EO) for (a) active power, (b) reactive power as well as (c) total energy.

the optimization framework as it claims approximately 97 %
of the computation time per iteration. For the time domain
optimization, this results in an average computation time of 4
hours per 100 iterations for p = 16.

As indicated in Fig. 6(c), most of the algorithms achieve
even better objective function values than the known good
parameter set Lgood. In order to evaluate the optimization
results from the operational perspective, the time domain
results related to the best solution L of each algorithm are
analysed as well as shown in Fig. 7. For solutions L with
J(L) < J(Lgood) overshoots in dc voltage and ac power
quantities are reduced at the cost of temporarily higher en-
ergy deviations (within technical bounds). This is realized
by slightly higher ac current, higher dc current and reduced
inner current dynamics compared to Lgood. Moreover, power
controller dynamics are reduced, i.e. the controller bandwidth
is reduced. For solutions L with J(L) > J(Lgood) power
quantities achieve their set points comparatively slow or show
high-frequency oscillations (RW-GWO) and high overshoots
of dc voltage.

Results related to the controller implementation are stated in
Tab. II. It is derived that most of the algorithms choose similar
controller implementations for the given optimization problem.
However, the best algorithms choose a detailed calculation
of current references via (8), whereas the worst ones choose
(7). Another structural difference represents the choice of
bm↵
udc. Interestingly, only SSDO and LevySSDO choose the

non-energy based control approach which indeed leads to an
asymptotic instability of energy quantities (see Fig. 7(c)) and
hence, high objective function values.

In the next step, we started different optimizations for the
control design problem with respect to a combined frequency
domain and time domain optimization. Within the frequency
domain we optimized the ac side frequency response of the
standalone model. From the optimization results (not shown
here) one can derive that the solution with the best Jfreq
indeed improves passivity of the converter but at the cost

TABLE II
CONTROLLER IMPLEMENTATION RESULTS OF FIVE best (BOLD) AND FIVE

worst (IN BRACKETS) ALGORITHMS ACCORDING TO FIG. 6(C)

b↵PQ bud0,calcPQ bm,calc
udc bctrle bm↵

udc b↵udc b↵uac
1(1) 0(1) 1(1) 1(1) 0(1) 1(1) 1(1)

(a)

(b)

Fig. 8. (a) Frequency scan and (b) time domain responses for Lgood, the
best solution obtained by a combined frequency and time domain optimization
(HPSO) as well as by the time domain optimization (EO).

of no stationary accuracy and high power oscillations. This
situation is defined as Pareto optimality. Now, prioritizing
stationary accuracy we chose higher weights for the time
domain optimization i.e. ↵ = 0.4 and � = 0.6. The best
solution was found by the HPSO algorithm.

In order to classify the combined optimization, Fig. 8 shows
frequency domain as well as time domain responses for Lgood,
the best solution obtained by a combined frequency and time
domain optimization by means of HPSO as well as the best
solution obtained by the time domain optimization by means
of EO. The non-passive region arising in the frequency range
above 1 kHz is related to system delays and may be influenced
by the controller design as well as implementation, as elabo-
rated extensively in [2]. Generally, the best algorithms for both
optimization settings find solutions that result in an improved
damping behaviour within non-passive regions compared to
Lgood. When regarding the time domain results, indeed the
solution obtained by the pure time domain optimization shows
a better response for the given problem than the best solution
found by the combined optimization.
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VI. CONCLUSION

This contribution presents a toolbox that allows an interface
between meta-heuristic optimization algorithms and an MMC
model with an arbitrary control structure implementation. The
toolbox enables to optimize the controller implementations
with respect to time domain as well as frequency domain
related issues.

It is shown that some algorithms are more suitable than
others for the given problem and that obtained results are
consistent across several optimization executions. Moreover,
the time domain as well as frequency domain objective func-
tion was validated analysing the time domain and frequency
domain results of the best solutions, respectively. On basis
of the introduced objective functions, the algorithms manage
to optimize the controller implementation and design in the
desired manner related to an operational perspective. As most
parts of the objective function are related to physical quantities
at the MMC’s ac or dc terminal, the introduced optimization
framework is applicable for grey-boxed EMT models, too. In
this case, physical domain knowledge is implemented in the
optimization routine and allows to include prior knowledge of
the optimized system. This can be done by including the signal
flows and control blocks of PSCAD as additional information
for the optimization.

It was shown briefly that the tool manages to optimize
frequency domain related issues in a desired manner, too.
Future research will evaluate the optimization performance
with respect to certain weights for time and frequency domain
optimization. Moreover, the optimization framework will be
tested for several MMC control modes.

In this paper, only a selection of 18 meta-heuristic optimiza-
tion algorithms from six categories is considered. Evaluating
other algorithms might give valuable insights on how algo-
rithms from different categories perform on the task at hand.
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