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Abstract—When grid planners design updates for existing
infrastructure in power grids, they frequently encounter a lack
of trustworthy and readily-usable digital grid models. This is
especially the case at the low-voltage (LV) level. While the location
of secondary substations and end-consumers is often known,
the topology is less certain and cannot be uniquely estimated.
This work proposes a probabilistic framework to efficiently
sample possible georeferenced grid topologies. A parametric
probability distribution assigns an exact probability to each pos-
sible, georeferenced grid topology using characteristic features.
The parameters of the probability distribution can be learned
from known exemplary grid topologies. A Markov chain Monte
Carlo (MCMC) algorithm is then designed to sample from the
learned distribution with low computational complexity, thereby
enabling efficient statistical inference. The described steps are
demonstrated for the probabilistic modeling of a LV distribution
grid in Schutterwald, Germany.

Index Terms—Grid Topology Identification, Exponential Fam-
ily, MCMC, Statistical Inference

I. INTRODUCTION

A. Motivation
The increasing prevalence of distribution grids featuring

distributed renewable energy sources, electric vehicle (EV)

charging units, and heat pumps often necessitates infrastruc-

ture upgrades [1]. Considering the long historical record of

several distribution grids, grid planners frequently encounter a

lack of trustworthy and readily-usable, digital models. This is

especially the case at the LV level. As a result, appropriate grid

models for the existing infrastructure must be reconstructed,

often relying on sparse information. While knowledge about

the secondary substations and the end-consumers might typi-

cally be available from asset management and billing systems,

the topology of existing LV distribution grids is often less

certain [2]. Moreover, LV distribution lines are frequently

located underground, making available topology information

difficult and expensive to verify [1].
Reconstructing an appropriate grid topology in this setting

is a strongly under-determined problem and obtaining a sin-

gle, trustworthy solution cannot be expected. An alternative,
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promising strategy involves adopting a probabilistic approach,

explicitly representing the remaining uncertainty using a prob-

ability distribution over the possible grid topologies. This

concept was first introduced in a recent work [2], showcasing

its practical utility, e.g., for the overload analysis of secondary

substations in response to the increasing adoption of residential

EV charging units. While in [2] we used a fixed and ad-

hoc randomized growth model for estimating the probabil-

ity distribution, this work focuses instead on establishing a

precise probabilistic model for georeferenced distribution grid

topologies, learning the model’s parameters based on a training

dataset, and demonstrating how to perform efficient statistical

inference using a specifically tailored MCMC algorithm. Ef-

ficient statistical inference enhances the practical applicability

of the proposed probabilistic approach to also perform grid

operation tasks, e.g., grid topology detection [3] and state

estimation [4].

B. Related work

The literature on grid topology generators is extensive and

can be classified into two categories. Generators for a given

region of interest typically use geospatial information, e.g.,

the street configuration and the location of the end-consumers

[5], [6], or voltage fingerprints extracted from advanced me-

tering infrastructures [1], [3] or phasor measurement units [3].

Alternatively, there are generators that produce an ensemble

of distinct grid topologies and demonstrate a realistic degree

distribution [7], matching also additional topological [8], [9],

[10] and electrical characteristics [8] of real-world distribution

grids. The work in [11] bridges the gap between the two

categories of grid topology generators by establishing a geo-

referenced grid topology over time that accurately reflects the

degree distribution observed in real-world distribution grids.

Random distribution grid models are a subset of general ran-

dom graph models that are, e.g., also used for modeling social

networks [12] or biological molecules [13]. Note that this work

investigates models where the graph topology is uncertain, and

not the more common case where quantities defined on edges

or links of a known graph topology are uncertain, see, e.g., the

works on power flow calculations with graph neural networks

[14] or probabilistic graphical models [15], [16]. Random
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graph models can be defined algorithmically, e.g, via uniform

edge probabilities or preferential attachment rules [17], [18].

Such models are, however, typically not trainable to closely

match a given set of examples.

Trainable models can be constructed within the framework

of the exponential family [19], [20]. This parametric family of

distributions offers significant flexibility and robust modeling

capabilities, as it allows to select from a wide array of

distinct distributions for each individual feature. Moreover,

these distributions can be represented in an intuitive way,

which is a key aspect in gaining the confidence of grid

planners when using them to model existing grid topologies.

In this work, we thus employ this approach and, to the

best of our knowledge, adapt it for the first time to model

distinct georeferenced grid topologies. Another viable way for

constructing trainable probabilistic models for graphs involves

using generative neural networks, see, e.g, [21], [10]. These

models, however, typically demand a large number of training

examples and are comparatively less intuitive.

C. Contributions

In this work, we address the problem of learning a well-

defined probability distribution over feasible georeferenced

grid topologies and leveraging the learned distribution for

efficient statistical inference. To this end, we establish an

exponential family framework that precisely assigns proba-

bility values to possible grid topologies. This is achieved

by using characteristic features of LV distribution grids, e.g.,

the load factor of the secondary substations or the maximum

feeder length. We introduce a Maximum Likelihood Estima-

tion (MLE) approach leveraging known exemplary distribution

grid topologies to estimate the parameters of the established

exponential family model. Then, we propose a novel MCMC

algorithm for sampling high-probability grid topologies. This

algorithm is key for performing efficient statistical inference,

i.e., calculating moments or quantiles of derived quantities

of interest, e.g., the load of a secondary substation, across

the sampled grid topologies. The MCMC algorithm is specif-

ically tailored towards georeferenced grid topologies of LV

distribution grids and has low computational complexity. The

proposed framework, whose workflow is shown in Fig. 1, is

finally demonstrated through simulations performed on a LV

distribution grid in Schutterwald, Germany.

The remainder of the paper is structured as follows. The

proposed framework, its training and inference procedures

are introduced in Section II. The simulation experiments are

presented and discussed in Section III. Section IV concludes

the work.

II. METHODOLOGY

The proposed framework comprises three key components.

Following the definition of the notation, first an exponential

family approach for modeling probability distributions over

georeferenced grid topologies within a region of interest is

outlined. Second, a procedure for parameter estimation within

Start

Calculate the core

base graph Gbase,core

Base graph of

the region Gbase

Sample using MCMC and

uniform target distribution

Background grid

topologies G̃

Learn natural parameters

η of exponential family

Training grid

topologies Gtrain

Target distribution

Sample using MCMC

and target distribution

Generated grid topologies

Stop

Fig. 1. Flowchart describing the procedural workflow of the proposed
approach, emphasizing its inputs ( ), outputs ( ) and key processes
( ).

this probabilistic approach is presented. Third, efficient sta-

tistical inference is enabled by introducing a novel MCMC

algorithm for sampling georeferenced grid topologies with low

computational complexity.

A. Notation

A region of interest and a corresponding grid topology

are schematically shown in Fig. 2 (a). Formally, the re-

gion of interest is represented as a quadruple Gbase =
(Vbase, Ebase, Pl, V

s
base), in the following referred to as base

graph. Gbase is assumed to be georeferenced such that, e.g., the

lengths between nodes can be calculated. The N vertices in

set Vbase and the M edges in set Ebase ⊆ Vbase ×Vbase describe

the underlying street configuration. The map Pl : Vbase → R

returns the design load for each node and V l
base = {v ∈

Vbase|Pl(v) > 0} denotes the set of end-consumer nodes.

V s
base ⊂ Vbase denotes the set of K secondary substation nodes

with nameplate capacity Ck, k = {1, . . . ,K}.

Let G denote the set of all possible grid topologies G within

the region of interest. A grid topology is represented as a graph

G = (V,E) where V ⊆ Vbase is the set of electrical nodes (i.e.,

buses, secondary substations and end-consumers) and E ⊆
Ebase the set of electrical lines. According to this definition,

G then follows the layout of Gbase and is georeferenced via
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Gbase. For k ∈ {1, . . . ,K} let Tk = (VTk
, ETk

), VTk
⊆ V ,

ETk
⊆ E, denote the subtopology k, i.e., the subgraph of G

that is connected to the secondary substation vk ∈ V s
base.

B. Probability distribution over grid topologies

Since distribution grids supply all end-consumers and are

typically operated using a radial configuration [22], not ev-

ery possible grid topology can be considered as practically

feasible. Precisely, a grid topology G is considered feasible

iff it satisfies the following three conditions: first, every end-

consumer node is supplied, i.e., V l
base ⊆ V . Second, all nodes

in V are connected via E to exactly one secondary substation.

This implies that each node in V is part of one subtopology

Tk and that all Tk are distinct from each other. Third, each

subtopology Tk is a tree, i.e., acyclic. We denote the set

of feasible grid topologies by Gf ⊆ G and by δGbase

Gf
(G) its

indicator function, i.e., a map returning one if G ∈ Gf and

zero else.

In order to assign numeric probability values to a fea-

sible grid topology G, we characterize each Tk ∈ G,

k = {1, . . . ,K}, by a set of features x(Tk;Gbase) ∈ R
n.

These features are selected to be relevant for the planning

of distribution grids. Specifically in this work, x1(Tk;Gbase)
is the load factor of the secondary substation, i.e.,

x1(Tk;Gbase) =
∑

v∈VTk

Pl(v)

Ck
, (1)

and x2(Tk;Gbase) is the maximum length of a feeder in Tk,

i.e., the maximum distance from the secondary substation to

any end-consumer in VTk
. Note that other features can be used

to characterize a grid topology, see, e.g., [23]. Load factor and

maximum feeder length provide, however, a comprehensive set

of features, with the former characterizing the grid assets and

the latter the grid layout.

We then define the probability density over G using an

exponential family model [24]. Specifically, we model the

unnormalized density p̃(G;Gbase,η) as

p̃(G;Gbase,η) = δGbase

Gf
(G)

∏

Tk∈G

eη
ᵀτ (x(Tk;Gbase)) (2)

where τ : R
n → R

m is a sufficient statistics function

characterizing the probability model associated with each

feature and η are the corresponding natural parameters. For

instance, a Gaussian model of a single feature x with mean

μ and variance σ2 can be formulated using the sufficient

statistics τ (x) = (x, x2)ᵀ and the natural parameters η =
(μ/σ2,−1/2σ2). Likewise, other distributions can be modeled

using this framework, given the sufficient statistics, e.g., for

the Gamma distribution used in this work τ (x) = (log x, x)ᵀ.

The full, normalized probability density over G is then defined

as

p(G;Gbase,η) =
1

Z(η, Gbase)
p̃(G;Gbase,η), (3)

where Z(η, Gbase) is the normalization factor

Z(η, Gbase) =
∑

G∈G
p̃(G;Gbase,η). (4)

C. Model parameter learning

The natural parameters η of the exponential family model

can be estimated through MLE, leveraging a set of known,

exemplary georeferenced grid topologies. Given a training

dataset Gtrain = {(G(i)
base, G

(i))}i=1,...,D comprising D feasible

grid topologies, the objective is to determine η that maximizes

the likelihood of Gtrain, i.e.,

max
η

D∏

i=1

p(G(i);G
(i)
base,η). (5)

Since the negative log-likelihood of exponential family

models exhibits strict convexity [24], the optimal parameters

can be uniquely and robustly estimated via gradient-based op-

timization techniques. Specifically, the gradient of the negative

log-likelihood L(Gtrain,η) with respect to η is defined as

∇ηL(Gtrain,η) = −
D∑

i=1

∑

Tk∈G(i)

τ (x(Tk;G
(i)
base))

+D∇η log
∑

G∈G
δGbase

Gf
(G) e

ηT ∑
Tk∈G τ (x(Tk;Gbase)).

(6)

Summing over all G ∈ G to calculate the normalization

factor Z(η, Gbase) or its derivative is theoretically possible

but computationally prohibitive, primarily due to the fact

that this sum involves 2(M+N) elements. In this work, we

thus approximate Z(η, Gbase) by summing over a significantly

smaller and computationally tractable set of feasible random

grid topologies G̃ ⊆ G, which we refer to as the background

grid topologies. If G̃ is representative, then omitting the

remaining samples from the sum only changes p(G;Gbase,η)
by a constant scaling factor. This scaling factor, however, has

no impact on the optimal η, due to the logarithm. Moreover,

the MCMC algorithm described next is independent of this

scaling factor.

D. Statistical inference

Given the trained exponential family model, efficient statis-

tical inference can be performed to derive meaningful planning

insights for a region of interest, e.g., overload probability of

the secondary substations [2], voltage criticality assessment at

or behind the secondary substations, or average grid losses.

Formally, these inference tasks involve calculating the means,

variances, or quantiles of values derived from the uncertain

grid topologies. These tasks can be solved computationally

through sampling and the efficiency of the solution depends

on the rapid generation of different high-probability grid

topologies from the exponential family model.
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(a)

(b)

(c)

Fig. 2. Schematic of a georeferenced grid topology Gt and the novel,
distribution grid-adapted generation mechanism of a Markov chain candidate
G′

t+1. (a) The shown grid topology Gt follows the base graph Gbase ( )
and is the union of two tree-like subtopologies ( , ) that connect
all end-consumers ( , ) to exactly one secondary substation ( , ). (b)
The core base graph Gbase,core is a reduced version of Gbase. For the selected
secondary substation k ( ), there are two active edges ( ), from which
a core node vt ( ) is sampled and reassigned to k. If the edge ( )
did not exist, the core node ( ) would be isolated when performing the
reassignment and the generation procedure would be aborted. (c) To obtain the
complete new grid topology candidate G′

t+1, subtrees ( ) assigned to nodes
with the new secondary substation label and segments with the same new
secondary substation label at both ends are completely reassigned. Segments
( ) with different new secondary substation label are split at random locations
( ). Finally, a minimum spanning tree is computed for each subtopology
to eliminate possible loops.

1) Metropolis-Hastings: Theoretically, one can sample a

random grid topology G by independently determining for

each edge or node within the base graph Gbase whether it is

a part of G. However, using this procedure would probably

result in a grid topology G that is infeasible. Even if a

sampled G were feasible, it would most likely remain a low-

probability occurrence within the learned distribution. Rather

than using such a Monte Carlo (MC) approach, we introduce

a more efficient MCMC algorithm. This algorithm constructs

a Markov chain of high-probability grid topologies from the

learned distribution p(G;Gbase,η), in the following referred to

as target distribution. Each sample depends on its preceding

one and inherits some of its high-probability characteristics.

Yet the chain must also exhibit sufficient difference to rapidly

explore the space of all high-probability grid topologies and

obtain representative samples in finite time. Moreover, the

generation of new samples must be computationally efficient

to enable the use of larger sample sizes and thereby make the

inference more statistically robust.

A common MCMC approach, also employed in this work,

is the Metropolis-Hastings (M-H) algorithm [25]. We denote

the grid topology at step t of a Markov chain as Gt = (Vt, Et).
To generate the next grid topology Gt+1 from the target

distribution p(G;Gbase,η), the M-H algorithm generates a

proposal grid topology G′
t+1 from the proposal distribution

q(G′
t+1;Gt, Gbase) and accepts it as Gt+1 using the acceptance

ratio

α =
p̃(G′

t+1;Gbase,η)

p̃(Gt;Gbase,η)

q(Gt;G
′
t+1, Gbase)

q(G′
t+1;Gt, Gbase)

, (7)

otherwise Gt is retained as Gt+1. As long as the Markov chain

is ergodic, i.e., every grid topology with non-zero probability

is attainable with non-zero probability, the distribution of the

samples in this chain matches p(Gt;Gbase,η) for t → ∞ [25].

2) Specialized proposal distribution: When generating a

new candidate grid topology G′
t+1 from its predecessor Gt,

G′
t+1 must inherit many high-probability characteristics from

Gt, while exhibiting sufficient difference. Moreover, both

q(G′
t+1;Gt, Gbase) and q(Gt;G

′
t+1, Gbase) must be analyti-

cally computable. These requirements can be met by us-

ing a novel and computationally efficient candidate gener-

ation mechanism, custom-designed for grids topologies and

sketched in Fig. 2 (b)–(c). Reducing Gbase into a core base

graph Gbase,core = (Vbase,core, Ebase,core), Vbase,core ⊆ Vbase is

a key concept for efficiently generating G′
t+1, see Fig. 2

(b). This reduction enables efficient operations on complete

subtrees and segments within Gbase, eliminating the need to

handle individual nodes separately. Constructing Gbase,core is

reminiscent of the Kron reduction technique often applied to

complex power grids [26] and involves the following steps.

First, all terminal nodes, i.e., nodes v ∈ Vbase with deg(v) = 1
and v �∈ V s

base, are iteratively assigned to their neighbor until

no such nodes remain. All nodes in Vbase assigned to one of

the remaining nodes form its subtree within Gbase, see Fig.

2 (c). Second, all nodes with a degree of two are iteratively

eliminated, while preserving the physical distance. During this

procedure, the neighbors of a removed node are reconnected

through a newly generated edge, and the physical distance is

adjusted accordingly. The original edges are then assigned to

the newly established connection. All edges in Ebase assigned

to a remaining connection (u, v) ∈ Ebase,core form a segment
S(u, v) ⊆ Ebase within Gbase, see Fig. 2 (c).

Let at : Vbase → {0, 1, . . . ,K} encode the assignment of

base graph nodes to the secondary substations of Gt, where

at(v) = 0 indicates that node v ∈ Vbase is not part of Vt.

Moreover, let the active edges of subtopology k in the core

base graph Gbase,core be defined as Ẽt
base,core(k) = {(u, v) ∈

Ebase,core|at(u) = k ∧ at(v) �= k}.

The first step for generating a new candidate grid topology

G′
t+1 operates at the level of the reduced base graph Gbase,core.

Specifically, a subtopology Tk of Gt is selected uniformly

at random. Then, a core node vt ∈ VTk′ is switched from

subtopology Tk′ to Tk by drawing from Ẽt
base,core(k), also

uniformly at random, see Fig. 2 (b). If the switch of vt from

subtopology Tk′ to subtopology Tk leads to isolated core

nodes in Gbase,core, i.e., v′ ∈ Vbase,core with at(v
′) = k′ is

not connected the secondary substation k′, then the candidate
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(a)

Training grid topologies Background grid topologies Generated grid topologies

(c)

(d)(b)

(e)

(f)

Fig. 3. Exemplary grid topologies for five different secondary substations ( , , , , ) in the considered Schutterwald region. (a)–(b) Training grid
topologies. (c)–(d) Background grid topologies. (e)–(f) Generated grid topologies using the proposed MCMC algorithm.

generation is aborted and the Markov chain progresses with

the previous topology1, see Fig. 2 (b).

The second step for generating G′
t+1 involves deriving the

complete proposal within the base graph Gbase. To this end,

the following nodes are reassigned from secondary substation

k′ to secondary substation k. All nodes in segments S(u, vt)
with at(u) = k along with all their subtrees are reassigned to

k, see Fig. 3 (c). Segments S(u, vt) with at(u) �= k are split

at a location drawn uniformly at random. The subsegments

connected to vt are reassigned to k, while the other subseg-

ments retain their secondary substation label k′, see Fig. 3

(c). Finally, a minimum spanning tree algorithm is applied to

ensure that Tk′ and Tk are acyclic. The selected nodes and

edges then form the new subtopologies Tk′ and Tk for G′
t+1.

We calculate the numeric value of the proposal probability

distribution q(G′
t+1;Gt, Gbase) as

1

K

1

|Ẽt
base,core(k, vt)|

∏

(u,vt)∈Et
base

(k)

1

|S(u, vt)| , (8)

where Ẽt
base,core(k, vt) = {(u, vt) ∈ Ẽt

base,core(k)|at(u) = k}
and Et

base(k) = {(u, vt) ∈ Ebase,core|at(u) �= k}. The numeric

value of the reverse proposal q(Gt;G
′
t+1, Gbase) is analogously

calculated as

1

K

1

|Ẽt+1
base,core(k

′, vt)|
∏

(u,vt)∈Et+1
base

(k′)

1

|S(u, vt)| . (9)

Note that the ergodicity of the procedure is inherently guar-

anteed by its construction.

1This is because the reverse probability of switching two core nodes in this
case would be zero, making the acceptance ratio in Eq. (7) zero as well.

III. SIMULATION EXPERIMENTS

The following simulation experiments comprise three parts.

First, the parameter learning for the exponential family model

is presented. Second, the performance of the MCMC algorithm

is examined. Third, the improved statistical inference of the

proposed framework when compared to a MC sampling tech-

nique is demonstrated, e.g., the one introduced in our previous

work [2].

A. Setup & Implementation

A residential region in Schutterwald, Germany, is consid-

ered with 13 secondary substations and 1751 end-consumers.

The geocoordinates and nameplate capacity of the secondary

substations are extracted from [27]. The street configuration

and the location and living area of the end-consumers are

obtained open-source from OpenStreetMap.

The dataset for training the exponential family model should

comprise grid topologies from real-world distribution grids.

Since access to these grid topologies is, however, often re-

stricted [10], a synthetic dataset is generated as substitute using

the following procedure. First, 2000 random grid topologies

are generated for the specified Schutterwald region using the

algorithm from [2]. Next, we assume that the load factor of

secondary substations of real-world distribution grids ranges

from 0.3 to 1.3 and the maximum feeder distance does not

exceed 1 kilometer. A generated grid topology is included

in the training dataset iff all of its subtopologies meet these

assumptions, see, e.g., Fig. 3 (a)–(b).

When yielding the background grid topologies G̃, we re-

frained from using the algorithm from [2]. This is motivated

by its tendency of lacking representativeness and exhibiting a

bias towards certain grid characteristics. Instead, we establish

G̃ by generating 5000 grid topologies with the introduced
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MCMC algorithm and a uniform target distribution. Using this

approach yielded grid topologies with more evenly distributed

grid characteristics, see, e.g., Fig. 3 (c)–(d). Note that the

background dataset should be diverse, comprising a spectrum

of grid topologies of different designs and regions to ensure

its representativeness. Since the open-source availability of

the secondary substation locations is, however, limited, we

considered the same region in Schutterwald, Germany to

establish G̃ in this work.

The proposed framework is implemented in Python using

the TensorFlow and NetworkX libraries. All experiments were

run using a standard laptop with an Intel i7-12800H CPU. Note

that when generating a new candidate grid topology G′
t+1,

only the subtopologies Tk′ and Tk are changed. To enhance run

time efficiency and eliminate repetitive computations, we thus

calculate the features x(Tk;Gbase) at each step of the Markov

chain only for Tk′ and Tk. Meanwhile, for the remaining

subtopologies, we use a caching mechanism to store and then

reuse the previously calculated features.
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Fig. 4. (a) Histograms of the load factor for the training and background
dataset. (b) Kernel density estimate of the joint distribution of the two
considered features. (c) Evolution of the negative log-likelihood L(Gtrain,η)
across 1000 training epochs for training an exponential family model with
the load factor feature only or (d) with both considered features. (e) Learned
and training distribution for an exponential family model using the load factor
only or (f) both considered features.

B. Parameter learning

We first investigate the process of parameter learning for

the exponential family model. Fig. 4 (a)–(b) shows the feature

distributions of the training and background grid topologies.

As it can be seen, the training grid topologies can be differ-

entiated from the background based on the proposed features.

Note that due to the underlying street configuration and fixed

total load within the distribution grid, feasible grid topologies

have a bounded load factor and maximum feeder length. Fig.

4 (c)–(d) shows the robust training of the exponential family

framework using either only the load factor feature or both

proposed features, modeled with a Gamma distribution. The

resulting learned distributions align well with the distribution

of the training dataset, see Fig. 4 (e)–(f). In the following, we

examine exponential family models exclusively based on the

load factor to allow for one-dimensional distribution plots.

0 5000 10000

No. of draws

0.5

1.0

1.5

L
oa
d
fa
ct
or

(p
.u
.)

(a)

0.0 1.0 2.0

Load factor (p.u.)

0.1

0.8

1.5

D
en
si
ty

(b) MCMC draws

Target

0.0 1.0 2.0

Load factor (p.u.)

0.1

0.8

1.5
D
en
si
ty

(c) Chain No. 1

Chain No. 2

Chain No. 3

Fig. 5. (a) Trace plot depicting the load factor of a secondary substation
from a Markov chain comprising 10000 draws. (b) Load factor distribution of
a Markov chain comprising 10000 draws in relation to the target distribution
p(G;Gbase,η). (c) Load factor distribution of three different Markov chains
comprising 10000 draws.

C. Markov chain convergence diagnostics

In Fig. 5, we examine the performance of the proposed

MCMC algorithm using three diagnostic tools. Fig. 5 (a)

shows the load factor trace of a secondary substation from a

Markov chain comprising 10000 draws. As it can be seen, the

Markov chain exhibits robust mixing, avoiding any tendency to

remain stagnant in a particular region within the feature space.

In Fig. 5 (b), we show the distribution of a Markov chain

comprising 10000 draws in comparison to the target distribu-

tion p(G;Gbase,η). As evident, the Markov chain faithfully

represents p(G;Gbase,η). To further substantiate this finding,

three distinct Markov chains were independently constructed,

each initialized with a different starting grid topology and

each comprising 10000 draws. As shown in Fig. 5 (c), all

three chains consistently yield a similar distribution, indicat-

ing convergence of the Markov chains to their equilibrium

distribution.
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Fig. 6. (a) Histograms and 90% quantile estimates of the load factor for
one exemplary secondary substation, produced with the proposed MCMC
approach and two baseline MC methods (see Sec. III-D, 1500 samples), as
well as equivalent values for the training dataset. (b) Relative error of the 90%
quantile estimates for the selected secondary substation when compared to the
90% quantile of the training dataset. The results are presented as the mean
and standard deviation across three independent repetitions of the experiment.
The 30000 samples experiment was not considered for both MC approaches
due to computational constraints.

D. Efficient statistical inference

In the following, we explore two possible advantages of

the proposed framework in contrast to a MC approach, i.e.,

enhanced sample quality and shorter run time.

We use the algorithm from [2] as our MC baseline. Attempt-

ing to sample grid topologies by independently drawing edges

and nodes from Ebase and Vbase typically yields infeasible grid

topologies, making this approach computationally prohibitive.

In contrast, the procedure from [2] always produces feasible

grid topologies, yet the distribution of these grid topologies is

unknown. We thus consider for comparison both the original

samples and a weighted approach, using p̃(G;Gbase,η) to

better align with the learned target distribution. The presented

MCMC results are based on samples from three independent

chains, with a non-considered burn-in of 100 samples.

In Fig. 6, we investigate the enhanced sample quality

achieved by the proposed framework. Fig 6 (a) shows the

load factor distributions and the 90% quantile estimates of one

exemplary secondary substation within the region of interest,

produced with the different considered methods and compared

to the benchmark training dataset. As it can be seen, the

distribution and estimated 90% quantile of the MCMC draws

align closer with the benchmark training distribution and its

90% quantile, in contrast to the distribution and 90% quantile

estimate of the both the weighted and unweighted MC draws.

Moreover, while weighting the MC draws brings them closer

to the benchmark distribution, the unclear distribution resulting

from the algorithm proposed in [2] remains.

These findings are further substantiated in Fig. 6 (b), which

shows the relative deviation of the different estimation pro-

cedures against the benchmark. As the number of samples

increases, the proposed MCMC method converges towards

the benchmark, reducing both estimation error and variance

observed across the three independent repetitions of the exper-

iment. In contrast, both MC approaches consistently produce

inaccurate estimates.

TABLE I
RUN TIMES OF GRID TOPOLOGY GENERATION FOR THE CONSIDERED

SCHUTTERWALD REGION.

No. of grid topologies
Run time

MC baseline [2] MCMC algorithm

1 17 sec 0.8 sec

2000 567 min 27 min

Table I presents the computation times for one or more

samples using the MCMC algorithm and the MC baseline.

The run time required for generating a new grid topology

using the MCMC algorithm is smaller by a factor of approx.

21. Moreover, the reported run time of the MCMC algorithm

includes the time for feature calculation, while the reported

run time of the MC baseline does not factor in this calcula-

tion since it occurs after the simulation has concluded. The

computational advantage of the proposed MCMC approach

can be understood as follows. While the MC baseline scales

with the number of nodes Vbase in the base graph Gbase, the

mechanism for generating a new grid topology within the

MCMC algorithm uses the core base graph Gbase,core and thus

scales with the number of edges Ebase,core in Gbase,core, and

|Ebase,core| 
 |Vbase|.
IV. CONCLUSION

In this work, we introduced a novel framework to learn

a well-defined probability distribution over feasible georefer-

enced grid topologies. By leveraging this learned distribution,

our approach can then perform efficient statistical inference

using a specifically tailored MCMC algorithm.

There are several avenues of future work. We are actively

engaged on expanding the proposed approach to include

available grid measurements. Moreover, we are integrating

real-world topology data to train the proposed algorithm. Since

in this work we considered the same region for both parameter

learning and statistical inference, it would be also interesting to

use different grid topologies from various regions and assess

their impact on the performance of the proposed algorithm.

Finally, exploring additional features for characterizing grid

topologies as well as alternative statistical models within the

exponential family for modeling these features are also worth

investigating.

In summary, there seems to be significant promise in learn-

ing probability distributions over georeferenced grid topolo-

gies and leveraging these distributions for statistical inference.
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