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Abstract—In the context of managing distributed energy re-
sources (DERs) within distribution networks (DNs), this work
focuses on the task of developing local controllers. We propose
an unsupervised learning framework to train functions that can
closely approximate optimal power flow (OPF) solutions. The
primary aim is to establish specific conditions under which these
learned functions can collectively guide the network towards
desired configurations asymptotically, leveraging an incremental
control approach. The flexibility of the proposed methodology
allows to integrate fairness-driven components into the cost
function associated with the OPF problem. This addition seeks
to mitigate power curtailment disparities among DERs, thereby
promoting equitable power injections across the network. To
demonstrate the effectiveness of the proposed approach, power
flow simulations are conducted using the IEEE 37-bus feeder.
The findings not only showcase the guaranteed system stability
but also underscore its improved overall performance.

Index Terms—DER Control; Asymptotic Stability; Equitable
Control; Unsupervised Learning.

I. INTRODUCTION

The integration of DERs has the potential to enhance power
system performance and reduce greenhouse gas emissions.
However, without proper regulation, the injection of power
from DERs could have detrimental effects on the operation
of distribution networks, such as causing significant volt-
age fluctuations [1]. Fortunately, modern smart inverters are
often equipped with sensing and computational capabilities,
enabling DERs to learn effective control policies from data
in DNs to perform ancillary services. This paper introduces
a framework for synthesizing local control rules that leverage
historical load data to optimize the operation of the distribution
network with provable performance guarantees.

Literature Review: Classically, generator power outputs are
computed off-line by the system operator solving optimal
power flow (OPF) problems. However, the intermittency of
renewable generation, the fast variability of load demands,
and the uncertainty affecting DN parameters, call for on-
line closed-loop strategies which rely on measurements to

This work was authored in part by NREL, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract
No. DE-AC36-08GO28308. Funding provided by DOE Office of Electricity,
Microgrid Program. The views expressed in the article do not necessarily
represent the views of the DOE or the U.S. Government. The U.S. Government
retains and the publisher, by accepting the article for publication, acknowl-
edges that the U.S. Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this work,
or allow others to do so, for U.S. Government purposes. This work was also
partially supported by NSF Award ECCS-1947050.

update the power injections [2]. Local control schemes, where
decision-making occurs based on locally available information,
are particularly suitable for DNs without access to real-
time communication networks, as exemplified by the IEEE
standard 1547 [3]. However, local schemes have intrinsic
performance limitations and in general do not provide optimal
performance [4]. Recent advances have seen the incorporation
of data-driven techniques in the design of local controllers,
aiming to reduce their optimality gap compared to central-
ized solutions. While most of this research has centered
on Volt/Var control, i.e., the task of regulating the voltage
profiles by adjusting DERs’ reactive power outputs, a key
consideration has emerged – system stability. The work [5]
designs optimal control curves complying with the form and
constraints provisioned by the IEEE 1547 Standard, ensuring
stable Volt/Var dynamics. Additionally, [6] employs a recursive
neural network whose weights correspond to the parameters of
a stable reactive power control rule. More recent efforts seek
to learn stability-guaranteed nonlinear Volt/Var controllers
leveraging structured neural networks, see e.g., reinforcement
learning [7], [8], [9] and supervised learning [10], [11] ap-
proaches. In the context of unsupervised learning, existing
results, e.g., [12], generally do not consider system stability.

Smart inverters come equipped with the capability to reg-
ulate voltage by adjusting their reactive power injections.
However, due to their limited apparent power ratings, espe-
cially when photovoltaic (PV) outputs are high, they often
resort to active power curtailment for voltage regulation [13].
Nevertheless, the design of active power curtailment strate-
gies, if not carefully balanced for fairness among customers,
can result in an unequal distribution of burdens, particularly
affecting customers located farther from the substation in terms
of electrical distance [14], [15]. To address this challenge,
various approaches, including droop-based and optimization-
based methods, have been proposed to incorporate fairness
considerations into active power curtailment strategies [15],
[16], [17]. However, the fairness-promoting penalties proposed
in the existing literature may not be suitable for designing
data-driven controllers. Such controllers require penalties to
be differentiable and to have the capacity to model amortized
fairness, focusing on the fairness of decisions made over time
rather than instantaneous fairness.

Statement of Contributions: This paper proposes a frame-
work for devising local power control schemes that serve as
local approximations of OPF solvers. These approximations,
referred to as equilibrium functions, map local information to
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active and reactive power setpoints. The contributions of this
paper contribution are three-fold. First, in contrast to our pre-
vious works [10], [11], this approach adopts an unsupervised
learning approach, eliminating the need for a labeled data set.
This alleviates the burden of solving a large number of OPF
instances off-line prior to training. Thus, the network operator
can adapt the training process easily to account for changes in
the network or the optimization objectives. Second, the learned
equilibrium functions depend on both the voltage magnitudes
and the power injections, whereas similar approaches provides
equilibrium functions that depend only on the voltages [11],
or that are separable in simpler components bases solely on
voltage magnitudes and power injections [10]. We establish
explicit conditions for these equilibrium functions to steer
the network towards desirable configurations, as identified by
the equilibrium functions, through an incremental algorithm
controlling both active and reactive power injections. Third,
we introduce an equity-promoting penalty to facilitate learning
equitable controllers defined by up to N−1 protected features
of interest, where N is the number of controllable nodes.

Notation: R and C denote the set of real and complex
numbers. Matrices and column vectors are denoted by upper
and lower case boldface letters, respectively. Calligraphic
symbols denote sets. Given a vector a (resp., diagonal matrix
A), its n-th (diagonal) entry is denoted by an (An). The
symbol (·)⊤ stands for transposition, 1, 0 vectors of all ones
and zeros, respectively, and I denotes the identity matrix with
appropriate dimensions. Operators Re(·) and Im(·) extract the
real and imaginary parts of a complex-valued argument, and
act element-wise. With a slight abuse of notation, the symbol
|·| denotes the absolute value for real-valued arguments and the
cardinality when the argument is a set, whereas ∥·∥ represents
the ℓ2 vector norm and the norm that it induces on matrices.
Given a matrix with real eigenvalues, λmax(·) and λmin(·)
respectively denote its largest and smallest eigenvalue. The
condition number of a matrix A is κ(A) = ∥A∥∥A−1∥.

II. DISTRIBUTION GRID MODELING

A radial single-phase (or a balanced three-phase) DN having
N + 1 buses can be modeled by a tree graph G = (Ñ , E)
rooted at the substation. The nodes in Ñ := {0, . . . , N} are
associated with grid buses, and the edges in E with power
lines. The substation, labeled as node 0, is modeled as a slack
bus, i.e., an ideal voltage source imposing the nominal voltage
of 1 p.u. All the other buses are collected in N = {1, . . . , N}.

If we neglect the shunt admittances, the grid bus admittance
matrix Ỹ ∈ C(N+1)×(N+1) is defined as

(Ỹ)mn =


−y(m,n) if (m,n) ∈ E ,m ̸= n,

0 if (m,n) /∈ E ,m ̸= n,∑
k ̸=n y(k,n) if m = n.

where y(m,n) ∈ C is the admittance of the line (m,n) in E .
Ỹ is symmetric and satisfies Ỹ1 = 0. One can partition Ỹ

by separating the components associated with the substation
and the ones associated with the other nodes to obtain

Ỹ =

[
y0 y⊤

0

y0 Y

]
where y0 ∈ C, y0 ∈ CN , and Y ∈ CN×N . The matrix Y is
invertible if the network is connected [18], which we assume;
the real and the imaginary part of its inverse are denoted by
R̃ := Re(Y−1) and X̃ := Im(Y−1) ∈ RN×N , respectively.

The voltage magnitude at bus n ∈ N is denoted as
vn ∈ R. In general, the power injection of each bus is
composed by an uncontrollable and a controllable component.
The uncontrollable part is represented by the complex load
dn ∈ C, whose real (imaginary) part is the active (reactive)
power demand at node n. The vector d ∈ CN collects the
power demand for all n ∈ N .

Assume that the buses in the subset C ⊆ N , with |C| = C,
can control their power injections to some extent, e.g., because
they host DERs or controllable loads; pn and qn denote the
active and the reactive powers that they can control. The
remaining nodes constitute the load set L := N \ C. The
vectors p,q ∈ RC collect {pn}n∈C and {qn}n∈C , respectively.
Powers take positive (negative) values, e.g., pn, qn ≥ 0
(pn, qn ≤ 0), when they are injected into (absorbed from)
the grid.

It is convenient to partition power demands and voltage
magnitudes by grouping together the nodes belonging to the
load and generation sets as follows,

d =
[
d⊤
C d⊤

L
]⊤

, v =
[
v⊤
C v⊤

L
]⊤

.

Accordingly, we partition the matrices R̃ and X̃ to obtain

R̃ =

[
R RL
R⊤

L RLL

]
, X̃ =

[
X XL
X⊤

L XLL

]
,

with R,X ≻ 0, see [18]. For each bus n ∈ C, the active and
the reactive power injections are bounded by minimum and
maximum values, and therefore belong to the feasible sets

Pn := {pn : p
n
≤ pn ≤ pn}, Qn := {qn : q

n
≤ qn ≤ qn}.

Even though powers influence voltages through the well-
known nonlinear power flow equations, as customary in the
literature of control of DERs [5], [6], [7] for stability analysis,
we adopt the linearization

v(p,q,d) =

[
vC
vL

]
=

[
R
R⊤

L

]
p+

[
X
X⊤

L

]
q+ v̂ (1)

where

v̂ =
[
v̂⊤
C v̂⊤

L
]⊤

:= R̃Re(d) + X̃ Im(d) + 1.

Therefore, we can write vC as

vC(p,q,d) = Rp+Xq+ v̂C(d). (2)
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III. PROBLEM FORMULATION AND PROPOSED APPROACH

Ideally, the DER power injections should solve an optimal
power flow (OPF) problem of the form

(p⋆,q⋆) := argmin
p,q

f(p,q,d)

s.t. power flow equations,
p ∈ P,q ∈ Q

(3)

where P = ×n∈CPn, Q = ×n∈CQn and f is the cost
function of interest. Solving (3) is usually difficult because
of the non-convexity of the power flow equations. Traditional
approaches exploit convex relaxations, distributed optimiza-
tion, and learning-based approaches, see e.g., [2], [19]. Such
techniques rely on real-time communication among agents
and the necessary supporting infrastructure is usually not
present in DNs. Here instead we pursue the design of lo-
cal communication-free control rules conveniently developed
using neural-network-based surrogates of OPF solutions. Pre-
cisely, historical data are used to learn, for each agent n ∈ C,
functions

γn : R× C → Pn, (vn, dn) 7→ γn(vn, dn)

ξn : R× C → Qn, (vn, dn) 7→ ξn(vn, dn)

where γn (ξn) maps local voltages and power demands into
approximate optimal active (reactive) power injections. Sec-
tion IV below presents a local control scheme steering the
grid toward equilibrium points identified by the graphs of γn
and ξn. For this reason, we refer to them as equilibrium
functions. We collect the {γn}n∈C and {ξn}n∈C into the
vector-valued functions

γ : RC × CC 7→ P, ξ : RC × CC 7→ Q.

A common [7], [11] choice of cost function f in (3) is a
function penalizing voltage deviations

fv(p,q,d) =
∥∥v(p,q,d)− 1

∥∥2. (4)

The dependence of v on p,q, and d can be approximated
using (1) making (4) a linear least-squares problem. Hence, the
differentiation process required for learning γ and ξ becomes
simple to carry out. Other formulations of the loss functions
may consider the electric losses in the network, or the devia-
tion from a pre-determined substation power trajectory.

Equitable Controllers Design: The proposed learning-based
control approach determines both the active and reactive power
injections of the inverters for voltage regulation within a
distribution network. In scenarios with significant penetration
of renewable energy sources, control strategies tend to curtail
power injections from DERs to regulate voltage levels. The
frequent implementation of such control actions at specific
locations can necessitate the installation of energy storage
systems to manage the frequent curtailment of renewable
generation. Studies in the literature, e.g., [14], have shown
active power curtailments tend to increase with electrical
distance to the substation.

Therefore, it becomes imperative to address the fairness
and equity aspects of the proposed learning-based controllers.

To achieve this, consider a protected feature, denoted as zn,
associated with the DER located at node n. This feature
represents any characteristic which we want the control de-
cisions to become independent of, for instance, the electrical
distance to the substation. Note that merely excluding the use
of zn in the learning algorithm is insufficient to ensure this
independence, as the controller may inadvertently learn to rely
on other features that are correlated with the protected feature.
Thus, in the proposed learning approach, we introduce a
penalty term to the learning loss. This penalty term encourages
control decisions to be independent of the protected feature(s),
ensuring fairness in the control strategy.

We normalize all zn such that ∥zn∥ = 1 for n in C, and let
zC collect all zn for n in C. We define the equity-promoting
penalty as

feq(p,q,d) = ∥⟨γ(vC ,dC), zC⟩∥ . (5)

This penalty promotes the decision vectors to be orthogonal
on the protected features vector, promoting that decisions are
independent of the protected feature when the penalty is added
to the voltage regulation loss in (4).

It is worth highlighting that the design of this penalization
approach allows for the incorporation of not just a single
protected feature but multiple ones. Specifically, we may
include up to N − 1 protected features, where the aim is
for the control approach not to depend on them. This limit
comes from the fact that the penalty will encourage the control
policy to reside within the null space of the protected features
vectors. This null space in general vanishes when considering
N protected features or more. It is also worth noting that with
the increase of protected features, the control policy will be
restricted to a smaller space. Hence, it is expected that with
the inclusion of more protected features, the performance of
the proposed controller will be affected in terms of the voltage
regulation loss fv .

IV. STABLE INCREMENTAL CONTROL STRATEGY

We propose to control the DER hosted by bus n according
to the incremental strategy[

pn(t+ 1)
qn(t+ 1)

]
= (1− ϵ)

[
pn(t)
qn(t)

]
+ ϵ

[
γn(vn(t), dn(t))
ξn(vn(t), dn(t))

]
(6)

where ϵ ∈ [0, 1]. Note that, if pn(0) ∈ Pn and qn(0) ∈
Qn, then pn(t) and qn(t) are feasible for every t ≥ 0. Let
p⋆n, q

⋆
n, v

⋆
n be the power injections and the voltage magnitude

at an equilibrium of (6); it holds that[
p⋆n
q⋆n

]
=

[
γn(v

⋆
n, dn)

ξn(v
⋆
n, dn)

]
(7)

i.e., equilibria are exactly identified by the equilibrium func-
tions γn(vn, dn) and ξn(vn, dn).

Inspired by the solutions proposed in the literature, see [20],
[21], [22], [23], or even adopted by utilities, see [3], [24], we
consider equilibrium functions that are non-increasing in vn.
Before stating the main result characterizing system stability,
we define the following auxiliary variables

Lp := max
n

max
vn

∣∣∣∣∂γn(vn, dn)∂vn

∣∣∣∣ , Lq := max
n

max
vn

∣∣∣∣∂ξn(vn, dn)∂vn

∣∣∣∣
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which represent the maximum slope absolute values across
equilibrium functions. Second, define the scalar α∗ as the
solution of the following optimization problem

α∗ := argmin
α≥0

∥X− αR∥2 (8)

and the matrix X̂ := X−α∗R. Note that (8) is strictly convex
and hence α∗ is well defined.

The next result, proved in the Appendix A, identifies suffi-
cient conditions on the equilibrium functions that ensure the
stability of (9). We will assume that load demands are fixed
in time,

dn(t) = dn, n ∈ N , t ≥ 0.

This is motivated by the fact that we envision the control
algorithm (6) acting on a time scale that is faster than the load
variability. Using (1) and (6) yields the dynamical system[

p(t+ 1)
q(t+ 1)

]
= (1− ϵ)

[
p(t)
q(t)

]
+ ϵ

[
γ(vC(t),dC)
ξ(vC(t),dC)

]
(9a)

vC(t) = Rp(t) +Xq(t) + v̂C . (9b)

Theorem IV.1. (Global asymptotic stability of incremental
control strategy): The system (9) has an unique and globally
asymptotically stable equilibrium point if

∂γn(vn, dn)

∂vn
≤ 0,

∂ξn(vn, dn)

∂vn
≤ 0, n ∈ C, (10a)

Lq <
1

κ(R
1
2 )∥X̂∥

, and (10b)

ϵ < min
{
1,

2

1+κ(R
1
2 )Lq∥X̂∥+(Lp+α∗Lq)∥R∥

}
. (10c)

Note that introduction of α∗ in (8) makes the condition
on Lq in (10b) easier to satisfy. Another key feature of the
above design is that we require {γn}n∈C and {ξn}n∈C to be
non-increasing functions of vn, and thus in the following we
refer to this as non-increasing function (NIF) design. Besides
the stability consideration, the intuition behind the NIF design
also comes from the fact that voltage magnitudes are in general
increasing functions of the active and reactive powers, cf. (2).
In an effort to bring voltages as close as possible to the
nominal one, see (4), generators should inject more (less)
power when the voltage is lower (higher) primarily to support
system voltage levels, which is consistent with the behavior
of NIF design.

V. UNSUPERVISED LEARNING OF EQUILIBRIUM
FUNCTIONS

Our goal here is to learn the equilibrium functions {γn}n∈C
and {ξn}n∈C by training neural networks. The training is
performed in an off-line fashion. Let θn (ϕn) be the parameters
of the neural network used to learn γn(·) (ξn(·)) and collect
them in the vectors θ (ϕ). In the following, we explicitly
denote the dependence of the equilibrium functions from the
neural network parameters as γ(vC ,dC ;θ), ξ(vC ,dC ;ϕ)

The equilibrium function design can be formulated as the
task of selecting θ and ϕ to minimize an operational cost such
as regulating voltage. To address varying conditions of the

system, we sample diverse load conditions {d(m)}Mm=1 and
their corresponding voltage magnitudes {v(m)}Mm=1. With a
slight abuse of notation, we write the losses evaluated for the
m-th sample as fv(v(m),d(m)) (or f (m)

v ) and feq(v
(m),d(m))

(or f
(m)
eq ) given their dependence on the voltage magnitudes

and the load demand through the γ and ξ. Then, the samples
are used obtain the controllers design as follows

(θ⋆,ϕ⋆) ∈ arg min
θ∈Θ̃, ϕ∈Φ̃

1

M

M∑
m=1

fv(v
(m),d(m))+

λfeq(v
(m),d(m)).

(11)

where λ is a tunable penalty parameter and the loss functions
for the m-th sample are given by

f (m)
v =

∥∥v(γ(v(m)
C ,d

(m)
C ;θ), ξ(v

(m)
C ,d

(m)
C ;ϕ),d

)
− 1

∥∥2,
f (m)
eq =

∥∥⟨γ(v(m)
C ,d

(m)
C ;θ), zC⟩

∥∥.
The feasibility sets Θ̃ and Φ̃ are defined in the space of the
neural network parameters. We identify them later to ensure
that the conditions required for the stability of the control
strategy are satisfied, After θ⋆ and ϕ⋆ are identified, the local
control roles are deployed at all DERs.

Problem (11) can be tackled using a stochastic projected
gradient descent (SPGD) approach as follows:

θk+1 =

[
θk − δ

2B
∇θ

( ∑
m∈B

f (m)
v + λf (m)

eq

)]
Θ̃

ϕk+1 =

[
ϕk − δ

2B
∇ϕ

( ∑
m∈B

f (m)
v + λf (m)

eq

)]
Φ̃

where δ denotes the step size (learning rate), the set B is a
batch of B scenarios, and the operators [·]Θ̃ and [·]Φ̃ denote
the projection operator over Θ̃ and Φ̃, respectively.

This approach circumvents the need to produce training
samples, which require solving many instances of the opti-
mization problem offline before training the controllers. In
addition, network operators can easily adapt their training
process online to account for changes in the network or to
modify the optimization objective. On the other hand, this
approach requires to differentiate through the network model
during training, which can be done easily when a linearized
power flow model is used. Note that if the model is not
available to differentiate through, then the problem can be
formulated as a reinforcement learning policy optimization
problem, something which we do not pursue here.

One key aspect of the proposed controllers is the stability-
ensuring constraints (10a) and (10b) on the equilibrium func-
tions to enable their safe integration within distribution net-
works. These stability constraints translate into constraints on
the neural network parameters. Consequently, we design the
neural networks in a way that makes the projection process
easy to implement while not restricting their representation
capabilities. For the controller at bus n ∈ C, we use a single-
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layer neural network to map the inputs (vn, dn) to the control
actions (pn, qn) as[

pn
qn

]
=

H∑
h=1

[
w

(h)
p,n

w
(h)
q,n

]
tanh

(
a(h)n vn + b(h)n pL,n+

c(h)n qL,n + d(h)n

)
+

[
ep,n
eq,n

] (12)

where we separate dn into its real and imaginary parts pL,n

and qL,n. The neural network parameters for the controller at
bus n are wp,n, wq,n, a(h)n , b(h)n , c(h)n , d(h)n , e(h)p,n, and e

(h)
q,n for

all value of h ∈ {1, . . . ,H}. We choose the ‘tanh(·)’ activation
function because, as we show later, it simplifies our projections
to satisfy neural network parameter constraints.

The next result provides sufficient conditions for the neural
network parameters to ensure that the requirements (10a)
and (10b) are met. The value of the stepsize parameter ϵ can
then be set ex post according to (10c).

Proposition V.1. (Conditions on neural network parameters):
Conditions (10a) and (10b) are satisfied if the neural network
parameters are such that

a(h)n ≥ 0, w(h)
p,n, w

(h)
q,n ≤ 0, ∀ h = {1, ...,H}, (13a)

H∑
h=1

|w(h)
q,na

(h)
n | ≤ 1

κ(R
1
2 )∥X̂∥

, ∀ n ∈ C. (13b)

Proof. The derivatives of γn and ξn with respect to vn are

∂γn
∂vn

=

H∑
h=1

w(h)
p,na

(h)
n sech2

(
a(h)n vn+b(h)n pL,n+c(h)n qL,n+d(h)n

)
∂ξn
∂vn

=

H∑
h=1

w(h)
q,na

(h)
n sech2

(
a(h)n vn+b(h)n pL,n+c(h)n qL,n+d(h)n

)
and, under (13a), are non-positive,. Thus (10a) holds.

Condition (13b) then implies (10b) using the fact that
sech2(·) ≤ 1 and applying the triangle inequality followed
by the Cauchy–Schwarz inequality.

Proposition V.1 characterizes the feasible sets Θ̃ and Φ̃. In
practical implementations, one can fix the a

(h)
n ’s and find the

w
(h)
q,n’s to satisfy (13b) using a simple bisection approach or

by solving the projected optimization problem using convex
solvers [25]. This can be interpreted as decreasing the abso-
lute value of the w

(h)
q,n’s whenever the condition is violated.

The restriction on the sign of these parameters as a result
of (13a) further simplifies the projection. The details of these
formulations are omitted here due to space limitations.

VI. CASE STUDY

We conduct case studies on a single-phase equivalent of
the IEEE 37-bus feeder, see Fig. 1. Five DERs are deployed
at buses C = {10, 15, 16, 20, 25}, with generation capability
p̄n = 0.4 MW, p

n
= 0 MW, and q̄n = −q

n
= 0.4 MVAR for

all n ∈ C. For our experiments, we use the data set synthesized
in [11], which consists of B = 1440 minute-based load and
uncontrollable solar generation scenarios.

Fig. 1. IEEE 37-bus feeder. Red nodes represent buses hosting DERs, black
nodes represent loads.

We implement the neural network approach according to
Proposition V.1 using Pytorch and conduct the training process
in Google Colab with a single TPU with 32 GB memory.
The number of episodes and the number of neurons H are
5000 and 50, respectively, and the neural networks are trained
using the Adam optimizer [26] with learning rate δ = 0.01.
For convenience, we set all a(h)n in (13a) to be 1 for all h ∈
{1, ...,H} and n ∈ C. We solve a convex program to project
the neural network parameters to satisfy (13b) every 10 epochs
using CVXPY [25].

To evaluate its effectiveness, our NIF design is compared
with the linear Volt/Watt [27] and Volt/Var [22] controller:

pn(t+ 1) = ρn(vn(t))

ρn(vn) :=


pmax,n vn(t) ≤ vthmin,n,

pmin,n vn(t) ≥ vmax,n,

−bn(vn(t)−vthmin,n)+pmax,n otherwise,

qn(t+ 1) = ϱn(vn(t))

ϱn(vn) :=


qmax,n vn(t) ≤ vmin,n,

qmin,n vn(t) ≥ vmax,n,

−cn(vn(t)−vmin,n)+qmax,n otherwise,

where bn =
pmax,n−pmin,n

vmax,n−vth
min,n

, cn =
qmax,n−qmin,n

vmax,n−vmin,n
, and vthmin,n =

1.03, vmin,n = 0.95 and vmax,n = 1.05 for all n ∈ C.
We consider the vector zC in (5) to be the diagonal of R,

which measures the electric distance between the buses hosting
the controllable DERs and the substation. This consideration
is based on observations in the literature that the amount of
curtailed renewable energy tends to increase with the electrical
distance to the substation [14], [15].

With λ = 0.0154 in (11), Fig. 2 shows the learned Volt/Watt
and Volt/Var curves for node 25 with the 795-th minute-based
load and generation profile under the NIF design. It can be
seen that the equity-promoting penalization (5) promotes a
slightly different shape of the learned curves.

Next, we verify the stability properties of the NIF design.
Consider the 1095-th minute load-generation profile and 100
iterations of (6), the active and reactive power setpoint trajec-
tories converge to their final values if ϵ = 0.1, which satis-
fies (10c), cf. Fig. 3(a), while the case ϵ = 1 fails, cf. Fig. 3(b).
This is consistent with our conclusion in Theorem IV.1.
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(a) Volt/Watt Function (b) Volt/Var Function

Fig. 2. Learned (a) Volt/Watt and (b) Volt/Var curves for node 25 using 795-
th minute-based load and generation profiles with and without equity design.

(a) ϵ = 0.1

(b) ϵ = 1

Fig. 3. Evolution of active and reactive power setpoints under the proposed
power update rule (6) with (a) ϵ = 0.1 and (b) ϵ = 1, where we use the
power data profiles of the 1095-th minute and consider 100 iterations.

We then perform simulations to evaluate the control perfor-
mance in case the load-generation profiles change with time,
using the learned equilibrium functions under the NIF design
with equity penalty. Specifically, we obtain load-generation
profiles by randomly perturbing (5%) the consumption data
used to learn these curves. This can be interpreted as having
the data from the data set prescribing a day-ahead forecast,
whereas their random perturbation acts as the true realization
of the load-generation scenarios. We test the control perfor-
mance during 12:00 to 16:00. With 100 iterations of (6) for
each minute-based profile, Fig. 4(a) and Fig. 4(b) respectively
show the maximum voltage deviation and optimality gap for
both NIF and the linear control cases along the evolution. It
can be observed that the NIF control significantly enhances
the control performance while ensures stability.

Fig. 5 compares the curtailment evolution with and without
equity penalty. We note that node 25 is farther than node 10
in the electrical distance sense. It can be observed in Fig. 5(a)
and Fig. 5(b) that the equity penalty promotes node 10 to
curtail more generation so that nodes 10 and 25 contribute
more equally to address over-voltage (resulted by relatively
high uncontrollable solar generations during this time period).
Finally, Fig. 5(c) shows the evolution of equity cost value with
and and without the equity-promoting penalty, illustrating the

(a) Maximum voltage deviation (b) Optimality gap

Fig. 4. Maximum voltage deviation and optimality gap with respect to
the OPF solutions along the evolution. The linear control method induces
instability between 12:00 and 13:00.

overall effectiveness of the equity-promoting design.

VII. CONCLUSIONS

We have presented a fairness-aware unsupervised learning
framework for designing local controllers for DERs in DNs.
The framework aims to learn local surrogates that map local
information to active and reactive power, effectively approx-
imating the solutions derived from OPF models. We have
derived explicit conditions on these surrogates such that the
power setpoints converge in a globally asymptotic sense when
applied within an incremental control algorithm. We have
shown in power flow simulations that the proposed framework
guarantees the voltage stability and significantly enhances
the control performance compared to prevalent local control
approaches. The simulations have also underscored the pivotal
role played by equity-penalty design in fostering fairness
in renewable energy curtailment strategies. Future work will
attempt to drop the constraint that equilibrium functions are
non-increasing w.r.t. voltage magnitude, which has potential
advantages in DNs where DERs have relatively small control
capability [10], characterize the performance benefits of the
approach proposed here with respect to supervised learning in
terms of robustness under changes in network topology, and
evaluate the performance of the proposed method with dif-
ferent fairness metrics, robustness against model inaccuracies
and uncertainties, as well as its scalability properties in the
presence of more DERs.

APPENDIX
PROOF OF THEOREM IV.1

From (9), the voltage magnitudes evolution is

vC(t+ 1) = (1− ϵ)vC(t) + ϵ
[
R X

] [γ(vC(t),dC)
ξ(vC(t),dC)

]
+ ϵv̂C .

Define the diagonal matrices P(t) and Q(t) with elements

Pn(t) :=

{
γn(vn(t),dn)−γn(v

′
n(t),dn)

vn(t)−v′
n(t)

vn ̸= v′n,

0 vn = v′n,

Qn(t) :=

{
ξn(vn(t),dn)−ξn(v

′
n(t),dn)

vn(t)−v′
n(t)

vn ̸= v′n,

0 vn = v′n.
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(a) Curtailment without equity design (b) Curtailment with equity design (c) Evolution of equity cost

Fig. 5. Comparison of the evolution of curtailment between node 10 and node 25 (a) without and (b) with equity-promoting design and (c) the evolution of
the equity cost (λ = 0.0154).

For any vC(t),v
′
C(t) ∈ RC , it holds that

vC(t+ 1)− v′
C(t+ 1) = (1− ϵ)(vC(t)− v′

C(t))+

ϵ
[
R X

]([γ(vC(t),dC)
ξ(vC(t),dC)

]
−
[
γ(v′

C(t),dC)
ξ(v′

C(t),dC)

])
=

[
(1− ϵ)I+ ϵRP(t) + ϵXQ(t)

]
(vC(t)− v′

C(t))

:= S(t)(vC(t)− v′
C(t)).

Consequently,

lim
t→∞

vC(t)− v′
C(t) = lim

t→∞

[
t−1∏
k=0

S(k)

]
(vC(0)− v′

C(0)).

To prove the system stability, we show that the linear map
defined by each S(k) is a contraction, from which we conclude

lim
t→∞

[
t−1∏
k=0

S(k)

]
= 0 (14)

and hence the uniqueness of equilibrium and the global
asymptotic stability.

Under the NIF design, leveraging condition (10a) and the
fact that the entries of R and X are positive [28], we have

S(k) =
[
(1− ϵ)I− ϵR|P(k)| − ϵX|Q(k)|

]
=

[
(1− ϵ)I− ϵR(|P(k)|+ α∗|Q(k)|)− ϵX̂|Q(k)|

]
= R

1
2

[
(1− ϵ)I− ϵR

1
2 (|P(k)|+ α∗|Q(k)|)R 1

2︸ ︷︷ ︸
Z1(k)

− ϵR− 1
2 X̂|Q(k)|R 1

2︸ ︷︷ ︸
Z2(k)

]
R− 1

2 .

Since S(k) is similar to Z1(k) − Z2(k), it suffices to show
that the latter is a contraction. Noting ∥Z1(k)− Z2(k)∥ ≤
∥Z1(k)∥ + ∥Z2(k)∥, we show that ∥Z1(k)∥ + ∥Z2(k)∥ < 1.
Notice

∥Z2(k)∥ ≤ ϵ∥R− 1
2 ∥∥X̂∥∥Q(k)∥∥R 1

2 ∥ ≤ ϵκ(R
1
2 )∥X̂∥Lq.

Therefore, the condition

∥Z1(k)∥ < 1− ϵκ(R
1
2 )∥X̂∥Lq (15)

is enough to ensure that ∥Z1(k)∥+∥Z2(k)∥ < 1. Since Z1(k)
is symmetric, it follows that

∥Z1(k)∥ = max
{
|1−ϵ−ϵλmax(R

1
2 (|P(k)|+α∗|Q(k)|)R 1

2 )|,
|1−ϵ−ϵλmin(R

1
2 (|P(k)|+α∗|Q(k)|)R 1

2 )|
}
.

Since R
1
2 (|P(k)|+α∗|Q(k)|)R 1

2 is positive semidefinite, (15)
holds true if and only if

1− ϵ− ϵλmin(R
1
2 (|P(k)|+α∗|Q(k)|)R 1

2 )

< 1− ϵκ(R
1
2 )∥X̂∥Lq, (16a)

1− ϵ− ϵλmax(R
1
2 (|P(k)|+α∗|Q(k)|)R 1

2 )

> ϵκ(R
1
2 )∥X̂∥Lq − 1. (16b)

To prove inequality (16a), heed that condition (10b) implies
that

1− ϵκ(R
1
2 )∥X̂∥Lq > 1− ϵ.

Then, (16a) holds as λmin(R
1
2 (|P(k)|+ α∗|Q(k)|)R 1

2 ) ≥ 0.
Inequality (16b) follows from (10c) and from the fact that ϵ ∈
[0, 1] and R

1
2 (|P(k)|+α∗|Q(k)|)R 1

2 is similar to R(|P(k)|+
α∗|Q(k)|). This ends the proof.
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